4.6 Article

Control of Porous Layer Thickness in Thermophoretic Deposition of Nanoparticles

Journal

MATERIALS
Volume 14, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/ma14092395

Keywords

flame spray pyrolysis; nanoparticles; thermophoretic deposition; film thickness

Funding

  1. German Research Foundation (DFG) [419896563]
  2. Eberhard-Karls-Universitat Tubingen

Ask authors/readers for more resources

The thickness of functional layers has significant implications on the performance in various technologies. The study demonstrated the deposition of different thicknesses of functional layers and showed that adjusting layer thickness and primary particle size can benefit applications depending on porosity, such as catalysis or gas sensing. The relationship between surface and volume of the layers is crucial for high performance evaluations.
The film thickness plays an important role in the performance of materials applicable to different technologies including chemical sensors, catalysis and/or energy materials. The relationship between the surface and volume of the functional layers is key to high performance evaluations. Here we demonstrate the thermophoretic deposition of different thicknesses of the functional layers designed using flame combustion of tin 2-ethylhexanoate dissolved in xylene, and measurement of thickness by scanning electron microscopy and focused ion beam. The parameters such as spray fluid concentration (differing Sn2+ content), substrate-nozzle distance and time of the spray were considered to investigate the layer growth. The results showed approximate to 23, 124 and 161 mu m thickness of the SnO2 layer after flame spray of 0.1, 0.5 M and 1.0 M tin 2-EHA-Xylene solutions for 1200 s. While Sn2+ concentration was 0.5 M for all the flame sprays, the substrates placed at 250, 220 and 200 mm from the flame nozzle had layer thicknesses of 113, 116 and 132 mu m, respectively. Spray time dependent thickness growth showed a linear increase from 8.5 to 152.1 mu m when the substrates were flame sprayed for 30 s to 1200 s using 0.5 M tin 2-EHA-Xylene solutions. Changing the dispersion oxygen flow (3-7 L/min) had almost no effect on layer thickness. Layers fabricated were compared to a model found in literature, which seems to describe the thickness well in the domain of varied parameters. It turned out that primary particle size deposited on the substrate can be tuned without altering the layer thickness and with little effect on porosity. Applications depending on porosity, such as catalysis or gas sensing, can benefit from tuning the layer thickness and primary particle size.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available