4.6 Article

A Unified Abaqus Implementation of the Phase Field Fracture Method Using Only a User Material Subroutine

Journal

MATERIALS
Volume 14, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/ma14081913

Keywords

Abaqus; phase field fracture; finite element analysis; UMAT; fracture mechanics

Funding

  1. Ministry of Science, Innovation and Universities of Spain [PGC2018-099695-B-I00]
  2. Royal Commission for the 1851 Exhibition [RF496/2018]

Ask authors/readers for more resources

This study presents a simple and robust implementation of the phase field fracture method in Abaqus, utilizing only the UMAT subroutine and showing potential and robustness in addressing various fracture scenarios. The new implementation is capable of reproducing numerical and experimental results, capturing complex crack trajectories, and solving contact problems efficiently, with the developed code freely available for use.
We present a simple and robust implementation of the phase field fracture method in Abaqus. Unlike previous works, only a user material (UMAT) subroutine is used. This is achieved by exploiting the analogy between the phase field balance equation and heat transfer, which avoids the need for a user element mesh and enables taking advantage of Abaqus' in-built features. A unified theoretical framework and its implementation are presented, suitable for any arbitrary choice of crack density function and fracture driving force. Specifically, the framework is exemplified with the so-called AT1, AT2 and phase field-cohesive zone models (PF-CZM). Both staggered and monolithic solution schemes are handled. We demonstrate the potential and robustness of this new implementation by addressing several paradigmatic 2D and 3D boundary value problems. The numerical examples show how the current implementation can be used to reproduce numerical and experimental results from the literature, and efficiently capture advanced features such as complex crack trajectories, crack nucleation from arbitrary sites and contact problems. The code developed is made freely available.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available