4.6 Article

Synthesis of silver nanoparticles using root extract of Duchesnea indica and assessment of its biological activities

Journal

ARABIAN JOURNAL OF CHEMISTRY
Volume 14, Issue 5, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.arabjc.2021.103110

Keywords

Duchesnea indica; Silver nanoparticles; Characterization; Biological activities

Ask authors/readers for more resources

The study focused on the efficacy of synthesized silver nanoparticles by characterizing them using various techniques and testing their biological activities such as antimicrobial, anti-inflammatory, analgesic, and muscle relaxant. The results showed significant effects in these activities, suggesting further research for development of effective and safe formulations.
Treatment of microbial infections and inflammatory conditions have many challenges in terms of efficacy and safety issues. Novel approaches such as nanoparticles based drug delivery system have shown promising results to solve some of these problems. The aim of this study was to exploit the efficacy of the synthesized silver nanoparticles. In this study, silver nanoparticles (AgNPs) were biosynthesized using root extract (aqueous) of Duchesnea indica. They were characterized using different techniques such as, ultraviolet-visible (UV-Vis) spectrophotometry, transmission and scanning electron microscopy (TEM and SEM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDX), fourier-transform infrared spectroscopy (FTIR) and zetasizer. The UV-Vis spectra gave a characteristic peak at 423 nm; XRD confirmed its crystalline structure; FTIR confirmed the involvement of phytochemicals in their capping and reduction; TEM images confirmed their spherical shape with average width of 20.49 nm and average area of 319.25 nm(2) . Various biological activities were performed on these NPs, such as antimicrobial, anti-inflammatory, analgesic and muscle relaxant, which showed significant results as follow. Among bacterial strains, Salmonella typhi (MIC: 0.01 mg/ml) and Escherichia coli (MIC: 0.01 mg/ml), while among that of fungal Microsporum canis (MIC: 0.53 mg/ml) and Alternaria alternata (MIC: 0.51 mg/ml) were most susceptible. The AgNPs showed maximum anti-inflammatory activity (46.15 and 56.85%) at 20 mg/kg after 3 and 5 h of drug administration, comparable to that of standard. In-vivo model exhibited concentration dependent inhibition of both COX-2 and 5-LOX enzymes. Similarly, it exhibited maximum analgesic activity (54.24%) at 20 mg/kg dose after 60 min. of pain induction. Furthermore, they depicted maximum muscle relaxation (P < 0.01) after 60 and 90 min of drug administration. Above results suggest that these AgNPs can be studied further for the development of more effective and safe formulations. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available