4.8 Article

Side-Chain Engineering on Y-Series Acceptors with Chlorinated End Groups Enables High-Performance Organic Solar Cells

Related references

Note: Only part of the references are listed.
Article Chemistry, Physical

Asymmetric Alkoxy and Alkyl Substitution on Nonfullerene Acceptors Enabling High-Performance Organic Solar Cells

Yuzhong Chen et al.

Summary: The paper presents a strategy of asymmetric alkyl and alkoxy substitution on Y-series nonfullerene acceptors, achieving great performance in organic solar cell devices. Asymmetric substitution on Y6 results in a molecule that maintains V-oc improvement and good solubility, enabling highly efficient nonfullerene OSCs. This asymmetric side-chain strategy shows potential for improving the performance of other NFA-material systems.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency

Tao Liu et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency

Yong Cui et al.

ADVANCED MATERIALS (2020)

Article Multidisciplinary Sciences

Organic photovoltaic cell with 17% efficiency and superior processability

Yong Cui et al.

NATIONAL SCIENCE REVIEW (2020)

Review Chemistry, Multidisciplinary

Progress of the key materials for organic solar cells

Yang Tong et al.

SCIENCE CHINA-CHEMISTRY (2020)

Article Chemistry, Multidisciplinary

Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells Over 17% Efficiency

Danqin Li et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Physical

Selective Hole and Electron Transport in Efficient Quaternary Blend Organic Solar Cells

Lingeswaran Arunagiri et al.

JOULE (2020)

Review Chemistry, Multidisciplinary

A-DA'D-A non-fullerene acceptors for high-performance organic solar cells

Qingya Wei et al.

SCIENCE CHINA-CHEMISTRY (2020)

Article Chemistry, Multidisciplinary

Reducing Voltage Losses in the A-DA'D-A Acceptor-Based Organic Solar Cells

Jun Yuan et al.

Article Chemistry, Physical

A Simple n-Dopant Derived from Diquat Boosts the Efficiency of Organic Solar Cells to 18.3%

Yuanbao Lin et al.

ACS ENERGY LETTERS (2020)

Article Chemistry, Multidisciplinary

Exceptionally low charge trapping enables highly efficient organic bulk heterojunction solar cells

Jiaying Wu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model

Lingling Zhan et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

Molecular design of a non-fullerene acceptor enables aP3HT-based organic solar cell with 9.46% efficiency

Chenyi Yang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

Charge density modulation on asymmetric fused-ring acceptors for high-efficiency photovoltaic solar cells

Zhuohan Zhang et al.

MATERIALS CHEMISTRY FRONTIERS (2020)

Review Chemistry, Physical

Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells

Chao Li et al.

ADVANCED ENERGY MATERIALS (2019)

Article Chemistry, Multidisciplinary

Eco-Compatible Solvent-Processed Organic Photovoltaic Cells with Over 16% Efficiency

Ling Hong et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS

Yuanbao Lin et al.

ADVANCED MATERIALS (2019)

Review Chemistry, Multidisciplinary

Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells

Guangye Zhang et al.

CHEMICAL REVIEWS (2018)

Review Chemistry, Physical

Organic solar cells based on non-fullerene acceptors

Jianhui Hou et al.

NATURE MATERIALS (2018)

Review Nanoscience & Nanotechnology

Non-fullerene acceptors for organic solar cells

Cenqi Yan et al.

NATURE REVIEWS MATERIALS (2018)

Article Multidisciplinary Sciences

Organic and solution-processed tandem solar cells with 17.3% efficiency

Lingxian Meng et al.

SCIENCE (2018)

Article Chemistry, Physical

Transparent Polymer Photovoltaics for Solar Energy Harvesting and Beyond

Sheng-Yung Chang et al.

JOULE (2018)

Article Chemistry, Physical

Burn-in Free Nonfullerene-Based Organic Solar Cells

Nicola Gasparini et al.

ADVANCED ENERGY MATERIALS (2017)

Review Chemistry, Multidisciplinary

Stability of organic solar cells: challenges and strategies

Pei Cheng et al.

CHEMICAL SOCIETY REVIEWS (2016)

Article Chemistry, Multidisciplinary

The Active Layer Morphology of Organic Solar Cells Probed with Grazing Incidence Scattering Techniques

Peter Mueller-Buschbaum

ADVANCED MATERIALS (2014)

Article Chemistry, Multidisciplinary

Mobility Guidelines for High Fill Factor Solution-Processed Small Molecule Solar Cells

Christopher M. Proctor et al.

ADVANCED MATERIALS (2014)

Article Chemistry, Multidisciplinary

Mobility-Controlled Performance of Thick Solar Cells Based on Fluorinated Copolymers

Wentao Li et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Article Physics, Applied

Effect of traps on the performance of bulk heterojunction organic solar cells

M. M. Mandoc et al.

APPLIED PHYSICS LETTERS (2007)

Article Polymer Science

Morphology and phase segregation of spin-casted films of Polyfluorene/PCBM blends

Svante Nilsson et al.

MACROMOLECULES (2007)

Review Chemistry, Multidisciplinary

Device physics of polymer:fullerene bulk heterojunction solar cells

Paul W. M. Blom et al.

ADVANCED MATERIALS (2007)

Article Multidisciplinary Sciences

Self-organized discotic liquid crystals for high-efficiency organic photovoltaics

L Schmidt-Mende et al.

SCIENCE (2001)