4.8 Article

Highly Efficient Oxygen Reduction Reaction Activity of N-Doped Carbon-Cobalt Boride Heterointerfaces

Journal

ADVANCED ENERGY MATERIALS
Volume 11, Issue 17, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202100157

Keywords

cobalt boride; heterointerfaces; oxygen reduction reaction; zinc– air batteries

Funding

  1. Ministry of Education in Singapore [RG118/18, RG105/19]

Ask authors/readers for more resources

Compositional and structural engineering of metal-metalloid materials can enhance their electrocatalytic performance, with heterointerfaces between N-doped carbon and cobalt boride nanosheets yielding efficient and stable systems for the oxygen reduction reaction. The best-performing electrocatalyst exhibits significant advantages compared to commercial Pt/C, making it suitable for assembling zinc-air batteries.
Compositional and structural engineering of metal-metalloid materials can boost their electrocatalytic performance. Herein, a highly efficient and stable electrocatalytic system for the oxygen reduction reaction is obtained by creating heterointerfaces between N-doped carbon and cobalt boride nanosheets. Furthermore, a detailed investigation on the effect of annealing temperature as well as the amount of carbon and nitrogen sources is conducted to tune their performance. The best electrocatalyst among the prepared materials is found to have an onset potential of 1.05 V and half-wave potential of 0.94 V, which are 40 and 72 mV positive in comparison to commercial Pt/C, respectively. Finally, a zinc-air battery is also assembled using the catalyst.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available