4.8 Article

Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-22147-7

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) - Korea government(MSIT) [NRF-2017M3D1A1039378, NRF- 2019M3D1A1079309, NRF-2020R1A2C4002233]
  2. KIST Institutional Program

Ask authors/readers for more resources

The electrocatalytic conversion of nitrogen oxides into high-value chemicals is a promising strategy for mitigating the global nitrogen cycle imbalance. The use of iron-nitrogen-doped carbon as an efficient and durable electrocatalyst for selective reduction of nitric oxide to hydroxylamine is demonstrated in this study.
Electrocatalytic conversion of nitrogen oxides to value-added chemicals is a promising strategy for mitigating the human-caused unbalance of the global nitrogen-cycle, but controlling product selectivity remains a great challenge. Here we show iron-nitrogen-doped carbon as an efficient and durable electrocatalyst for selective nitric oxide reduction into hydroxylamine. Using in operando spectroscopic techniques, the catalytic site is identified as isolated ferrous moieties, at which the rate for hydroxylamine production increases in a super-Nernstian way upon pH decrease. Computational multiscale modelling attributes the origin of unconventional pH dependence to the redox active (non-innocent) property of NO. This makes the rate-limiting NO adsorbate state more sensitive to surface charge which varies with the pH-dependent overpotential. Guided by these fundamental insights, we achieve a Faradaic efficiency of 71% and an unprecedented production rate of 215 mu molcm(-2) h(-1) at a short-circuit mode in a flow-type fuel cell without significant catalytic deactivation over 50 h operation. Electrocatalytic conversion of nitrogen oxides to value-added chemicals is a promising strategy for mitigating the imbalance in the global nitrogen cycle. Here, the authors present iron-nitrogen-doped carbon as an efficient and durable electrocatalyst for selective nitric oxide reduction to hydroxylamine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available