4.5 Article

CD4+ Memory T-Cell Formation during Type 1 Immune Responses

Journal

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/cshperspect.a038141

Keywords

-

Categories

Ask authors/readers for more resources

This article discusses the transition of CD4(+) T cells from effector cells to memory cells, revealing key factors such as asymmetric cell division, the TCF-1 transcription factor, metabolic activity, etc., that play a role in this process.
Naive CD4(+) T cells become memory cells after proliferating in response to their cognate major histocompatibility complex class II (MHCII)-bound peptide and passing through an effector cell stage. The process by which CD4(+) memory T cells emerge from the effector cell pool, however, is less well understood than in the case of CD8(+) T cells. During certain acute infections, naive CD4(+) T cells proliferate and differentiate into various forms of type 1 (Th1) and follicular helper (Tfh) effector cells. We review the evidence that about 10% of the cells in each of these subsets survive to become memory cells that resemble their effector cell precursors. The roles that asymmetric cell division, the TCF-1 transcription factor, metabolic activity, reactive oxygen species, and the IL-7 receptor play in the effector to memory cell transition are discussed. We propose a speculative model in which the metabolic activity needed for rapid clonal expansion also generates toxic products that induce apoptosis in most effector cells. Memory cells then arise from the effector cells in each subset that are at the low end of the metabolic activity spectrum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available