4.8 Article

Butyrate can support PAOs b ut not GAOs in tropical climates

Journal

WATER RESEARCH
Volume 193, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.116884

Keywords

Butyrate; Enhanced biological phosphorus removal; Sludge fermentation; Microbial community selection; Temperature

Funding

  1. Advanced Environmental Biotechnology Centre (AEBC) of Nanyang Environment and Water Research Institute (NEWRI) , Nanyang Technological University, Singapore
  2. Research Fund for the Doctoral Program of Singapore and Interdisciplinary Graduate School of Nanyang Technological University

Ask authors/readers for more resources

The research indicates that using butyrate as a carbon source may enhance the performance of the enhanced biological phosphorus removal (EBPR) process, particularly benefiting polyphosphate accumulating organisms (PAOs) in warm climates. However, it also negatively affects glycogen accumulating organisms (GAOs), leading to a decrease in biomass concentration and microbial diversity in GAO cultures.
Glycogen accumulating organisms (GAOs) are thought to compete with polyphosphate accumulating organisms (PAOs) for the often-limiting carbon sources available in wastewater, deteriorating enhanced biological phosphorus removal (EBPR) performance at high temperatures. Fermentation liquids are often used to provide an additional carbon source supply in EBPR processes, where butyrate is known to be an important volatile fatty acid (VFA) produced in sludge fermentation. Nevertheless, the impact of butyrate on the PAO-GAO competition is not well understood especially at high temperature. The results of this study demonstrate that butyrate, as a supplemental or sole carbon source, could be promising for EBPR in tropical climates. When the carbon source was gradually changed from acetate to butyrate, a substantial PAO population was found under both conditions, despite a substantial shift in the abundance of Candidatus Accumulibacter phosphatis (decreased from 37.4% to 13.9%) to Rhodocyclaceae (increased from 2.0% to 14.5%), where both organisms likely played an important role in P-removal. Thus, a relatively stable P removal performance was realized throughout the whole operation period. Nevertheless, butyrate had a negative impact on GAOs. The biomass concentration and microbial diversity continually decreased in the GAO reactor, and Candidatus Competibacter phosphatis reduced from 27.3% to 6.2%, where the dominant population was replaced by Zoogloea. With the addition of butyrate as carbon source, the total amount of synthesized PHAs reduced in both PAO and GAO cultures and the composition of PHA was greatly changed. The presence of a novel PHA fraction (PHH) may disturb the microbial activity in the aerobic phase, where the GAO culture was more severely affected. Glycogen cycling also seemed to be limited in both reactors. This could reduce the GAO metabolism in both cultures and favor PAOs and P removal. Furthermore, the biomass growth rate of the PAO culture was higher than that of GAO when fed with butyrate, which also provides PAO a competitive advantage. All the above results indicate that butyrate could not be well metabolized by GAOs, but could provide PAOs a competitive advantage. Thus, mixed VFAs (i.e. acetate, propionate and butyrate) are likely to favor PAOs over GAOs in EBPR processes operated in warm climates, where the impact of substantial butyrate fractions represents an advantage towards successful process operation. (c) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available