4.8 Article

Enhancing ultrafiltration performance by gravity-driven up-flow slow biofilter pre-treatment to remove natural organic matters and biopolymer foulants

Journal

WATER RESEARCH
Volume 195, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117010

Keywords

Ultrafiltration; Biofiltration; Biopolymers; Microbial diversity; Membrane fouling

Funding

  1. National Natural Science Foundation of China [51908537, 51108444]
  2. Key Research and Development Plan of the Ministry of Science and Technology [2019YFD1100104]

Ask authors/readers for more resources

This study demonstrates the potential advantages of applying a bench-scale gravity-driven up-flow slow biofilter (GUSB) as a pre-treatment for ultrafiltration to reduce membrane fouling by efficiently removing organic carbon and biopolymers, thereby improving membrane performance and effluent quality.
Membrane fouling by influent biopolymers, and the formation of surface biofilms, are major obstacles to the practical application of membrane technologies. Identifying reliable and sustainable pre-treatment methods for membrane filtration remains a considerable challenge and is the subject of continuing research study worldwide. Herein, the performance of a bench-scale gravity-driven up-flow slow biofilter (GUSB) as the pre-treatment for ultrafiltration to reduce membrane fouling is presented. Dissolved organic carbon (DOC) was shown efficiently removed by the GUSB (around 80%) when treating a natural water influent. More significantly, biopolymers, with molecular weight (MW) between 20 kDa and 100 kDa, were effectively removed (62.8% reduction) and this led to a lower rate of transmembrane pressure (TMP) development by the UF membrane. Microbial diversity analysis further unraveled the function of GUSB in shaping microbes to degrade biopolymers, contributing to lower accumulation and different distribution pattern of SMP on the membrane surface. Moreover, the biofilm formed on the membrane surface after the pre-treatment of GUSB was observed to have a relative porous structure compared to the control system, which can also affect the fouling development. Long-term operation of GUSB further revealed its robust performance in reducing both natural organic matters and UF fouling propensity. This study overall has demonstrated the potential advantages of applying a GUSB to enhance UF process performance by reducing biofouling and improving effluent quality. (c) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available