4.7 Review

Microdosing for drug delivery application-A review

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 330, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2021.112820

Keywords

Micropump; Microdosing; Microactuation; Drug delivery; Patch pumps; Medical dosing application; Microfluidic

Ask authors/readers for more resources

Research on microfluidic actuators for drug dosing applications is increasing, with micropumps showing promise in reducing size and energy consumption. Despite advantages, industrial microdosing units are limited and micropump technology is not widely applied. This work analyzes specific challenges and requirements in medical dosing, evaluates mechanical micropumps for drug administration, and presents technical solutions to ensure fluidic performance and meet medical microdosing requirements.
There is an increasing amount of research on microfluidic actuators with the aim to improve drug dosing applications. Micropumps are promising as they reduce the size and energy consumption of dosing concepts and enable new therapies. Even though there are evident advantages, there are only few examples of industrial microdosing units and micropump technology has not yet found widespread application. To answer the evoked question of what limits the application of microdosing technology for drug delivery, this work provides a comprehensive insight into the subject of drug dosing. We highlight and analyse specific microfluidic challenges and requirements in medical dosing: safety relevant aspects, such as prevention of freeflow and backflow; dosing-specific requirements, such as dosing precision and stability; and system-specific aspects, such as size, weight, and power restrictions or economic aspects. Based on these requirements, we evaluate the suitability of different mechanical micropumps and actuation mechanisms for drug administration. In addition to research work, we present industrial microdosing systems that are commercially available or close to market release. We then summarize outstanding technical solutions that ensure sufficient fluidic performance, guarantee a safe use, and fulfil the specific requirements of medical microdosing. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 2.1. Safety aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. Microdosing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3. System-specific requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available