4.6 Article

Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin

Journal

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 93, Issue -, Pages 38-44

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejps.2016.07.012

Keywords

Nanoparticles; Doxorubicin; Vinblastine; Imatinib; Pemetrexed; Chitosan; Emulsion; Tumor; Cancer; Anticancer; P-gp; Efflux

Funding

  1. Scientific Research Support Fund (SRSF), Jordan
  2. SRSF

Ask authors/readers for more resources

The efficacy of most anticancer drugs is highly limited in vivo due mainly to poor pharmacokinetics behavior including poor bioavailability after extravascular administration. We have developed novel chitosan-modified polymeric nanoparticles for oral as well as i.v. administration. Nanoparticles were developed utilizing the double emulsion solvent evaporation technique for sustained delivery of various anticancer drugs. Chitosan diacetate (CDA) and chitosan triacetate (CIA) polymers were previously modified in our laboratory and used as novel matrix. Nanoparticles, loaded with various anticancer drugs, were characterized for particle size using dynamic light scattering as well as transmission electron microscopy and net surface charge using dynamic light scattering. Particles size was below 100 nm in diameter and zeta potential ranged - (25-30). Encapsulation efficiency of anticancer drugs varied considerably and was dependent on the physicochemical characteristics of the encapsulated drug. However, chitosan triacetate nanoparticles showed relatively higher encapsulation efficiency than chitosan diacetate nanoparticles. In vitro release of encapsulated drugs was sustained over a period of 14 days. Nanoparticles enhanced cellular accumulation of encapsulated drugs, compared to the free drugs, in vitro in MCF-7 and Caco-II tumor cell lines. In conclusion, diacetate and triacetate chitosan are novel polymers that can be used to formulate nanoparticles which efficiently encapsulated anticancer drugs, and sustained the release and enhanced tumor cellular uptake of these drugs. Further, chitosan triacetate nanoparticles enhanced oral bioavailability of doxorubicin. CDA and CTA nanoparticles can be used to efficiently deliver anticancer drugs and improve their in vivo profile. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available