4.7 Article

Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 767, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.144896

Keywords

Heterostructured nanocomposite; g-C3N4, TiO(2 )and ZnO; Photocatalytic degradation; Dyes

Funding

  1. DST, New Delhi [DST/TM/WTI/WIC/2K17/124]

Ask authors/readers for more resources

The review discusses the issue of water contamination by dyes and explores the potential solution using semiconductor-assisted materials and renewable solar energy. By developing semiconductor composite and heterojunction systems, the efficiency and stability of photocatalysts have been enhanced.
Water contamination by dyes is a matter of concern for human health and the environment. Various methods (membrane separation, coagulation and adsorption) have been explored to remove/degrade dyes. However, now the exploitation of semiconductor assisted materials using renewable solar energy has emerged as a potential candidate to resolve the issue. Although, single component photocatalysts (ZnO, TiO2, ZrO2) were experimented, due to their low efficiency and stability due to the high recombination rate electron-hole pair and inefficient visible light absorption, composites of semiconductor materials are being used. Semiconductor heterojunction systems are developed by coupling two or more semiconductor components. The synergistic effect of their properties, such as adsorption and improved charge carrier migration, is observed to increase overall stability. This review covers recent progress in advanced nanocomposite materials based on g-C3N4, TiO2 and ZnO used as photocatalysts with details of enhancing the photocatalytic properties by heterojunctions, crystallinity and doping. The conclusion at the end displays a summary, research gaps and future outlook. A holistic analysis of recent progress to demonstrate the efficient heterojunctions for photodegradation with optimal conditions, this review will be helpful for the development of efficient heterostructured systems for photodegradation. This review covers references from the year 2017-2020. (C) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available