4.7 Article

Biochars ages differently depending on the feedstock used for their production: Willow- versus sewage sludge-derived biochars

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 789, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.147458

Keywords

Willow; Sewage sludge; Pyrolysis; Aging; Abiotic oxidation; Stability

Funding

  1. National Science Centre [DEC-2017/25/B/NZ8/02191]

Ask authors/readers for more resources

The study investigated the effect of abiotic aging of biochars on their physicochemical properties and stability under controlled laboratory conditions. It was found that the properties of biochars changed with different aging temperatures and incubation periods, influenced by the type of feedstock and production temperature. All biochars were oxidized to some extent during aging, leading to an increase in surface oxygen functional groups, enhanced hydrophilicity, and decreased pH.
The aim of this study was to determine the effect of abiotic aging of biochars under controlled laboratory conditions on its physicochemical properties and in consequence on their stability. Biochars (BCs) produced at 500 and 700 degrees C from willow or sewage sludge were incubated at different temperatures (-20, 4, 20, 60, or 90 degrees C) for 6 and 12 months. Pristine (i.e. immediately after their production) and aged BCs were characterized using a range of complementary methods. As a result of simulated temperature aging, there was a change in all biochar properties studied, with the direction of these changes being determined by both the type of feedstock and biochar production temperature. At all temperatures, aging was the most intense during the first 6 months and led to oxidation of the biochars and removal of the most labile components from them. The intensity of these processes increased with increasing aging temperature. Incubation of the biochars for another 6 months did not have such a significant effect on the biochar properties as that observed during the first months of incubation, which is evidence that the biochars had reached stability. The sewage sludge-derived biochars with a higher mineral content than the willow-derived biochars were less stable. The low-temperature biochars (BC-500) with lower aromaticity were more prone to abiotic oxidation than the high-temperature biochars (BC-700) with higher aromaticity and structurally ordered C. Based on this study, it can be concluded that aging induced changes will be specific for each biochar, i.e. they will depend on both the type of feedstock and pyrolysis temperature. Nonetheless, all biochars will be oxidized to a smaller or greater extent, which will result in an increase in the number of surface oxygen functional groups, an increased degree of their hydrophilicity and polarity, and a decrease in pH. (c) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available