4.8 Article

Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 140, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2020.110694

Keywords

Agrophotovoltaics; Agrivoltaics; Solar sharing; Land use efficiency; Land productivity; Integrated food-energy system

Funding

  1. German Federal Ministry of Education and Research [033L098AN, 033L098G]

Ask authors/readers for more resources

The study evaluates the technical feasibility of agrivoltaic systems and analyzes its design, electrical yield, and productivity of different crops grown under the system, showing that the agrivoltaic system can enhance land productivity.
Combining agriculture and photovoltaics on the same land area gains in attention and political support in a growing number of countries accompanied by notable research activities in France, USA and Korea, amongst others. This study assesses the technical feasibility of agrivoltaic (APV), while it gives insights on how to design an APV system. Furthermore, it analyses the electrical yield and the behavior and productivity of four crops grown in Germany's largest agrivoltaic research facility installed in 2016 near Lake Constance within the research project APV-RESOLA by Fraunhofer Institute for Solar Energy Systems ISE. The German design differs from most other agrivoltaic approaches by allowing for a wide range of machine employment, facilitated by a vertical clearance of 5 m and a width clearance of up to 19 m. Crops cultivated under the APV system and on the reference field under a crop rotation scheme include potato, celeriac, clover grass and winter wheat. The land use efficiency measured by the Land Equivalent Ratio (LER) indicated a rise between 56% and 70% in 2017 while the dry and hot summer in 2018 demonstrated that the agrivoltaic system could increase land productivity by nearly 90%. Radiation simulations showed that deviating from full south by around 30 degrees resulted in equal distribution of radiation on ground level, representing the basis for the agrivoltaic design. Considering climate change and increasing land scarcity, our overall results suggest a high potential of agrivoltaics as a viable and efficient technology to address major challenges of the 21rst century.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available