4.8 Article

Molecular insights into plant desiccation tolerance: transcriptomics, proteomics and targeted metabolite profiling in Craterostigma plantagineum

Journal

PLANT JOURNAL
Volume 107, Issue 2, Pages 377-398

Publisher

WILEY
DOI: 10.1111/tpj.15294

Keywords

desiccation tolerance; transcriptomics; proteomics; metabolite profiling; integrative analysis; primary metabolism; resurrection plant

Categories

Funding

  1. Fonds National de la Recherche, Luxembourg [SMARTWALL C15/SR/10240550]
  2. DFG (German Research Council) [BA 712-18/1]

Ask authors/readers for more resources

The study revealed the dynamic changes in gene, protein, and metabolite levels of the resurrection plant Craterostigma plantagineum during dehydration and recovery, emphasizing the roles in regulating photosynthesis, energy metabolism, and amino acid metabolism. These changes indicate that plants undergo precise metabolic reprogramming to optimize performance and enhance drought tolerance under stress.
The resurrection plant Craterostigma plantagineum possesses an extraordinary capacity to survive long-term desiccation. To enhance our understanding of this phenomenon, complementary transcriptome, soluble proteome and targeted metabolite profiling was carried out on leaves collected from different stages during a dehydration and rehydration cycle. A total of 7348 contigs, 611 proteins and 39 metabolites were differentially abundant across the different sampling points. Dynamic changes in transcript, protein and metabolite levels revealed a unique signature characterizing each stage. An overall low correlation between transcript and protein abundance suggests a prominent role for post-transcriptional modification in metabolic reprogramming to prepare plants for desiccation and recovery. The integrative analysis of all three data sets was performed with an emphasis on photosynthesis, photorespiration, energy metabolism and amino acid metabolism. The results revealed a set of precise changes that modulate primary metabolism to confer plasticity to metabolic pathways, thus optimizing plant performance under stress. The maintenance of cyclic electron flow and photorespiration, and the switch from C-3 to crassulacean acid metabolism photosynthesis, may contribute to partially sustain photosynthesis and minimize oxidative damage during dehydration. Transcripts with a delayed translation, ATP-independent bypasses, alternative respiratory pathway and 4-aminobutyric acid shunt may all play a role in energy management, together conferring bioenergetic advantages to meet energy demands upon rehydration. This study provides a high-resolution map of the changes occurring in primary metabolism during dehydration and rehydration and enriches our understanding of the molecular mechanisms underpinning plant desiccation tolerance. The data sets provided here will ultimately inspire biotechnological strategies for drought tolerance improvement in crops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available