4.7 Article

Icariin stimulates osteogenesis and suppresses adipogenesis of human bone mesenchymal stem cells via miR-23a-mediated activation of the Wnt/β-catenin signaling pathway

Journal

PHYTOMEDICINE
Volume 85, Issue -, Pages -

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.phymed.2021.153485

Keywords

Human bone mesenchymal stem cells; Icariin; MicroRNA-23a; Osteogenesis; Adipogenesis; Wnt/beta-catenin signaling pathway

Funding

  1. National Natural Science Foundation of China [81802151]
  2. Shandong Province Natural Science Foundation [ZR2016HQ05, ZR2017BH089, ZR2019MH012]
  3. China Postdoctoral Science Foundation [2018M642616]
  4. Qingdao Applied Foundational Research Youth Project [19-6-2-55-cg]

Ask authors/readers for more resources

The study demonstrates that ICA can promote osteogenic differentiation and inhibit adipogenic differentiation of hBMSC through miR-23a-mediated activation of the Wnt/beta-catenin signaling pathway. This provides a new research direction for the application of ICA in bone tissue engineering.
Background: Icariin (ICA) is a bioactive compound isolated from epimedium-derived flavonoids that modulates bone mesenchymal stem cell osteogenesis and adipogenesis. However, its precise mechanism in this process is unknown. Purpose: The purpose of this study was to elucidate the role of ICA on human bone mesenchymal stem cell (hBMSC) osteogenesis and adipogenesis by focusing on miR-23a mediated activation of the Wnt/beta-catenin signaling pathway. Methods: After ICA treatment, hBMSC osteogenesis and adipogenesis were evaluated using alkaline phosphatase staining, an alkaline phosphatase activity assay, Oil Red O staining, and cellular triglyceride levels. Moreover, the mRNA and protein expression levels of osteogenic and adipogenic markers as well as key factors of the Wnt/beta-catenin signaling pathway were measured using quantitative reverse transcription polymerase chain reaction and western blotting. Lithium chloride, an activator of the Wnt/beta-catenin signaling pathway, was used as a positive control. Finally, to investigate the role of miR-23a in ICA-induced activation of the Wnt/beta-catenin signaling pathway, hBMSCs were transfected with miR-23a mimics or a miR-23a inhibitor. Results: ICA significantly promoted hBMSC osteogenic differentiation by upregulating alkaline phosphatase activity and the expression of bone sialoprotein II (BSPII) and runt-related transcription factor-2 (Runx-2). In contrast, ICA inhibited hBMSC adipogenic differentiation by reducing lipid droplet formation and cellular triglyceride levels as well as by downregulating the expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and CCAAT enhancer-binding protein-alpha (C/EBP-alpha). ICA mediated its effects on hBMSCs by activating the Wnt/beta-catenin signaling pathway. It did so by upregulating beta-catenin, low density lipoprotein receptor-related protein 5 (LRP5), and T cell factor 1 (TCF1). Notably, the up-regulation of these proteins was blocked by Dickkopf-related protein 1 (DKK1). Critically, the effects of ICA on hBMSCs were similar to that of the positive control, lithium chloride. Notably, ICA-induced activation of the Wnt/beta-catenin signaling pathway was significantly attenuated following miR-23a up-regulation. Conversely, miR-23a downregulation affected hBMSCs in the same manner as ICA; i.e., it activated the Wnt/beta-catenin signaling pathway. Conclusion: ICA promotes and inhibits, respectively, hBMSC osteogenesis and adipogenesis via miR-23a-mediated activation of the Wnt/beta-catenin signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available