4.2 Review

Topological superconductivity and Majorana states in low-dimensional systems

Journal

PHYSICS-USPEKHI
Volume 65, Issue 1, Pages 2-39

Publisher

TURPION LTD
DOI: 10.3367/UFNe.2021.03.038950

Keywords

low-dimensional system; Majorana bound state; spin-orbit coupling; topological invariant; Coulomb correlations; non-collinear magnetism; topological superconductivity; quantum transport

Funding

  1. Russian Foundation for Basic Research (RFBR) [19-12-50087]
  2. Russian Federation [MK-1641.2020.2]
  3. Program for Basic Research of the National Research University Higher School of Economics
  4. RFBR [19-02-00348, 20-32-70059, 20-02-00015]

Ask authors/readers for more resources

We discuss the properties and conditions for the realization of topologically nontrivial superconducting phases in condensed matter. We also explore the criteria and experimental methods for identifying Majorana bound states (MBSs) and discuss various models where MBSs are realized. The transport characteristics of devices containing topologically nontrivial materials are analyzed, and the conductance of an Aharonov-Bohm ring connected by a superconducting nanowire (SW) is studied in detail. We also investigate the occurrence of MBSs in the coexistence phase of chiral d + id superconductivity and 120-degree spin ordering.
We discuss the properties of topologically nontrivial superconducting phases and the conditions for their realization in condensed matter, the criteria for the appearance of elementary Majorana-type excitations in solids, and the corresponding principles and experimental methods for identifying Majorana bound states (MBSs). Along with the well-known Kitaev chain and superconducting nanowire (SW) models with spin-orbit coupling in an external magnetic field, we discuss models of quasi-two-dimensional materials in which MBSs are realized in the presence of noncollinear spin ordering. For finite-length SWs, we demonstrate a cascade of quantum transitions occurring with a change in the magnetic field, accompanied by a change in the fermion parity of the ground state. The corresponding anomalous behavior of the magnetocaloric effect can be used as a tool for identifying MBSs. We devote considerable attention to the analysis of the transport characteristics of devices that contain topologically nontrivial materials. The results of studying the conductance of an Aharonov-Bohm ring whose arms are connected by an SW are discussed in detail. An important feature of this device is the appearance of Fano resonances in the dependence of conductance on the magnetic field when the SW is in a topologically nontrivial phase. We establish a relation between the characteristics of such resonances and the spatial structure of the lowest-energy SW state. The conditions for the occurrence of an MBS in the phase of the coexistence of chiral d + id superconductivity and 120-degree spin ordering are determined in the framework of the t-J-V model on a triangular lattice. We take electron-electron interactions into account in discussing the topological invariants of low-dimensional superconducting materials with noncollinear spin ordering. The formation of Majorana modes in regions with an odd value of a topological Z invariant is demonstrated. The spatial structure of these excitations in the Hubbard fermion ensemble is determined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available