4.7 Article

The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations

Journal

EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Volume 252, Issue 3, Pages 995-1018

Publisher

ELSEVIER
DOI: 10.1016/j.ejor.2016.01.038

Keywords

Heterogenous fleet; Electric vehicle routing; Efficient constraint handling

Funding

  1. Austrian Climate and Energy Fund within the Electric Mobility Flagship Projects program [834868]

Ask authors/readers for more resources

Due to new regulations and further technological progress in the field of electric vehicles, the research community faces the new challenge of incorporating the electric energy based restrictions into vehicle routing problems. One of these restrictions is the limited battery capacity which makes detours to recharging stations necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric vehicles compared to conventional vehicles. We introduce the Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations (E-FSMFTW) to model decisions to be made with regards to fleet composition and the actual vehicle routes including the choice of recharging times and locations. The available vehicle types differ in their transport capacity, battery size and acquisition cost. Furthermore, we consider time windows at customer locations, which is a common and important constraint in real-world routing and planning problems. We solve this problem by means of branch-and-price as well as proposing a hybrid heuristic, which combines an Adaptive Large Neighbourhood Search with an embedded local search and labeling procedure for intensification. By solving a newly created set of benchmark instances for the E-FSMFTW and the existing single vehicle type benchmark using an exact method as well, we show the effectiveness of the proposed approach. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available