4.5 Article

Magnetic anisotropy in Co/phosphorene heterostructure

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.physe.2021.114620

Keywords

Interface magnetic anisotropy; Orbital hybridization; Spin-orbit coupling; Uniaxial strain

Funding

  1. Tarbiat Modares University
  2. Shahid Beheshti University

Ask authors/readers for more resources

Magnetic anisotropy (MA) is crucial in the design of future spintronic and magnetic devices, especially in structures with few angstroms thickness. Using first-principles calculations, we found that the interface MA in Co/phosphorene heterostructures is comparable to that of ferromagnet/heavy-metal interfaces, despite the weak spin-orbit coupling strength of phosphorus atoms. Furthermore, the magnetic anisotropy energy (MAE) of the system can be significantly increased by applying strain, with the MA varying from perpendicular to in-plane directions.
Magnetic anisotropy (MA) in magnetic multilayer structures plays a critical role in the design of future spintronic and magnetic devices. This property is more important for structures with a thickness of few angstroms, such as few-layer two-dimensional materials. Here, we determined the variation in the interface MA in mono- and bilayer Co/phosphorene heterostructures via first-principles density functional theory calculations. We found that the MA of these structures was comparable to those of ferromagnet/heavy-metal interfaces, despite the small spin-orbit coupling strength of phosphorus atoms. The hybridization of the metal d and the phosphorene p orbitals is well manifested in the projected density of states of these systems. The strain dependence of the magnetic anisotropy energy (MAE) in bilayer Co/phosphorene heterostructures under uniaxial strains along zigzag and armchair directions of the phosphorene layer was investigated, indicating that the MAE of the system increases by more than 80% by applying the strain. More specifically, by utilizing the uniaxial tensile strain along the zigzag direction of this structure, we found that MA could vary from perpendicular to in-plane directions. Our findings indicate that interlayer hybrid bonds in two-dimensional layered materials can be a promising approach to tailoring the MA property.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available