4.6 Article

Cross-linkable deep-blue small molecular material for solution-processed organic light-emitting diodes

Journal

OPTICAL MATERIALS
Volume 114, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.optmat.2021.110945

Keywords

Deep-blue OLEDs; Solution process; Cross-linkable material

Funding

  1. National Natural Science Foundation of China [U1605244]
  2. National Key Research and Development Program of China [2016YFB0401600]
  3. China Postdoctoral Science Foundation [2020M681726, 2019M661968]

Ask authors/readers for more resources

A novel deep-blue light-emitting material DPCS-DPS has been designed and synthesized with bipolar charge-transporting properties and good solvent-resistance after thermal cross-linking, suitable for solution-processed OLEDs. Using DPCS-DPS, non-doped OLED achieved a deep-blue emission wavelength of 415 nm, while doped devices reached a maximum current efficiency of 1.19 cd A-1 and maximum power efficiency of 0.75 lm W-1.
The development of deep-blue electroluminescent fluorescent materials with solution-processability and small molecule has exerted a great influence on the application in organic light-emitting diodes (OLED) field. However, so far there still lack of small molecule deep-blue materials suitable for solution-processed OLEDs and its wide band gap and low carrier mobility are requisite. Notably, the poor solvent resistance of small molecule usually incurs the inter-layer corrosion while using solution process to deposit multiple layers, which would result in poor device performance. In this work, a cross-linkable deep-blue light-emitting material DPCS-DPS containing diphenylsulfone/carbazole units and styrene groups has been designed and synthesized. The hole and electron transport parts composed of diphenylsulfone/carbazole exhibited bipolar charge-transporting properties, and the styrene group exhibited good solvent-resistance after thermal cross-linking, which is beneficial for the preparation of subsequent functional layers by solution process. By using the DPCS-DPS, the non-doped OLED achieved deep-blue emission wavelength of 415 nm, and the doped device approached a maximum current efficiency of 1.19 cd A-1 and maximum power efficiency of 0.75 lm W-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available