4.7 Article

Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances

Journal

NONLINEAR DYNAMICS
Volume 104, Issue 3, Pages 2051-2069

Publisher

SPRINGER
DOI: 10.1007/s11071-021-06401-7

Keywords

Graphene platelets; Metal foam cylindrical shells; Nonlinear vibration; Internal resonance; Donnell’ s nonlinear shell theory

Funding

  1. National Natural Science Foundation of China [11922205]
  2. LiaoNing Revitalization Talents Program [XLYC1807026]
  3. Fundamental Research Funds for the Central Universities [N2005019]

Ask authors/readers for more resources

The study focused on analyzing the nonlinear forced vibration of thin-walled metal foam cylindrical shells reinforced with functionally graded graphene platelets, particularly examining the 1:1:1:2 internal resonances. Different porosity distribution and graphene platelet distribution significantly influenced the nonlinear behavior of the shells, with the inclusion of graphene platelets weakening the nonlinear coupling effect. The effects of porosity coefficient and GPL weight fraction on the nonlinear dynamical response were found to be strongly related to porosity distribution and graphene platelet distribution.
In the present study, we analyze the nonlinear forced vibration of thin-walled metal foam cylindrical shells reinforced with functionally graded graphene platelets. Attention is focused on the 1:1:1:2 internal resonances, which is detected to exist in this novel nanocomposite structure. Three kinds of porosity distribution and different kinds of graphene platelet distribution are considered. The equations of motion and the compatibility equation are deduced according to the Donnell's nonlinear shell theory. The stress function is introduced, and then, the four-degree-of-freedom nonlinear ordinary differential equations (ODEs) are obtained via the Galerkin method. The numerical analysis of nonlinear forced vibration responses is presented by using the pseudo-arclength continuation technique. The present results are validated by comparison with those in existing literature for special cases. Results demonstrate that the amplitude-frequency relations of the system are very complex due to the 1:1:1:2 internal resonances. Porosity distribution and graphene platelet (GPL) distribution influence obviously the nonlinear behavior of the shells. We also found that the inclusion of graphene platelets in the shells weakens the nonlinear coupling effect. Moreover, the effects of the porosity coefficient and GPL weight fraction on the nonlinear dynamical response are strongly related to the porosity distribution as well as graphene platelet distribution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available