4.5 Article

Opportunistic Activity Recognition in IoT Sensor Ecosystems via Multimodal Transfer Learning

Journal

NEURAL PROCESSING LETTERS
Volume 53, Issue 5, Pages 3169-3197

Publisher

SPRINGER
DOI: 10.1007/s11063-021-10468-z

Keywords

Transfer learning; Multimodal sensors; Wearable sensors; Ambient sensors; Activity recognition; Human– computer Interaction

Funding

  1. Spanish Ministry of Science, Innovation and Universities (MICINN) [PGC2018-098813-B-C31, RTI2018-101674-B-I00]
  2. European Fund for Regional Development (FEDER)

Ask authors/readers for more resources

This paper introduces an alternative approach for training recognition systems based on transfer learning, using system identification techniques to automatically translate signals from source sensor domain to target sensor domain. Two transfer models are proposed for recognition system translation based on either activity templates or activity models.
Recognizing human activities seamlessly and ubiquitously is now closer than ever given the myriad of sensors readily deployed on and around users. However, the training of recognition systems continues to be both time and resource-consuming, as datasets must be collected ad-hoc for each specific sensor setup a person may encounter in their daily life. This work presents an alternate approach based on transfer learning to opportunistically train new unseen or target sensor systems from existing or source sensor systems. The approach uses system identification techniques to learn a mapping function that automatically translates the signals from the source sensor domain to the target sensor domain, and vice versa. This can be done for sensor signals of the same or cross modality. Two transfer models are proposed to translate recognition systems based on either activity templates or activity models, depending on the characteristics of both source and target sensor systems. The proposed transfer methods are evaluated in a human-computer interaction scenario, where the transfer is performed in between wearable sensors placed at different body locations, and in between wearable sensors and an ambient depth camera sensor. Results show that a good transfer is possible with just a few seconds of data, irrespective of the direction of the transfer and for similar and cross sensor modalities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available