4.8 Article

Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material

Journal

NATURE NANOTECHNOLOGY
Volume 16, Issue 6, Pages 661-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41565-021-00881-9

Keywords

-

Funding

  1. Defense Advanced Research Projects Agency Defense Sciences Office Program: EXTREME Optics and Imaging (EXTREME) [HR00111720029]
  2. Defense for Research and Engineering under Air Force [FA8721-05-C-0002, FA8702-15-D-0001]

Ask authors/readers for more resources

Utilizing Ge2Sb2Se4Te phase-change material, an electrically reconfigurable optical metasurface with half an octave spectral tuning range and over 400% optical contrast has been achieved. Additionally, a polarization-insensitive phase-gradient metasurface has been prototyped for dynamic optical beam steering applications.
Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability and functionality compared to their traditional bulk counterparts. Optical phase-change materials (PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and non-volatile switching characteristics. Here we report a large-scale, electrically reconfigurable non-volatile metasurface platform based on optical PCMs. The optical PCM alloy used in the devices, Ge2Sb2Se4Te (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss and a large reversible switching volume, enabling notably enhanced light-matter interactions within the active optical PCM medium. Capitalizing on these favourable attributes, we demonstrated quasi-continuously tuneable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering. An electrically reconfigurable optical metasurface using a Ge2Sb2Se4Te phase change material shows half an octave spectral tuning and promising performances for optical beam steering applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available