4.8 Article

Towards complete and error-free genome assemblies of all vertebrate species

Journal

NATURE
Volume 592, Issue 7856, Pages 737-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-021-03451-0

Keywords

-

Funding

  1. UKRI [MR/T021985/1] Funding Source: UKRI

Ask authors/readers for more resources

The Vertebrate Genome Project and the international Genome 10K consortium have collaborated to generate high-quality genome assemblies for 16 species representing six major vertebrate lineages, leading to new biological discoveries. Long-read sequencing technologies are essential for maximizing genome quality, and addressing complex repeats and haplotype heterozygosity are crucial for reducing assembly errors and improving completeness of reference genomes. The lessons learned from this project have paved the way for the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all known vertebrate species.
The Vertebrate Genome Project has used an optimized pipeline to generate high-quality genome assemblies for sixteen species (representing all major vertebrate classes), which have led to new biological insights. High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species(1-4). To address this issue, the international Genome 10K (G10K) consortium(5,6) has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available