4.8 Article

Structural and biochemical mechanisms of NLRP1 inhibition by DPP9

Journal

NATURE
Volume 592, Issue 7856, Pages 773-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-021-03320-w

Keywords

-

Funding

  1. National Natural Science Foundation of China [31421001]
  2. Alexander von Humboldt Foundation
  3. Max Planck-Gesellschaft
  4. Ministry of Health, Singapore, NMRC grant [MOH-000382-00]
  5. Concern Foundation
  6. Nanyang Assistant Professorship
  7. National Research Foundation fellowship [NRF-NRFF11-2019-0006]

Ask authors/readers for more resources

The study demonstrates that full-length rat NLRP1 and rat DPP9 can form a complex to suppress NLRP1 activation. The ZU5 domain is essential for both autoinhibition of NLRP1 and assembly of the complex. Furthermore, both NLRP1 binding and enzymatic activity are required for DPP9 to suppress NLRP1 in human cells.
Nucleotide-binding domain, leucine-rich repeat receptors (NLRs) mediate innate immunity by forming inflammasomes. Activation of the NLR protein NLRP1 requires autocleavage within its function-to-find domain (FIIND)(1-7). In resting cells, the dipeptidyl peptidases DPP8 and DPP9 interact with the FIIND of NLRP1 and suppress spontaneous NLRP1 activation(8,9); however, the mechanisms through which this occurs remain unknown. Here we present structural and biochemical evidence that full-length rat NLRP1 (rNLRP1) and rat DPP9 (rDPP9) form a 2:1 complex that contains an autoinhibited rNLRP1 molecule and an active UPA-CARD fragment of rNLRP1. The ZU5 domain is required not only for autoinhibition of rNLRP1 but also for assembly of the 2:1 complex. Formation of the complex prevents UPA-mediated higher-order oligomerization of UPA-CARD fragments and strengthens ZU5-mediated NLRP1 autoinhibition. Structure-guided biochemical and functional assays show that both NLRP1 binding and enzymatic activity are required for DPP9 to suppress NLRP1 in human cells. Together, our data reveal the mechanism of DPP9-mediated inhibition of NLRP1 and shed light on the activation of the NLRP1 inflammasome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available