4.6 Article

An efficient image encryption scheme using elementary cellular automata with novel permutation box

Journal

MULTIMEDIA TOOLS AND APPLICATIONS
Volume 80, Issue 14, Pages 21727-21750

Publisher

SPRINGER
DOI: 10.1007/s11042-021-10750-1

Keywords

Cellular automata; Chaotic map; Confusion; Diffusion; Image encryption

Ask authors/readers for more resources

In this paper, a lightweight cryptosystem is designed based on lookup table operations, reducing computational overhead and resource requirement. By combining one-dimensional elementary cellular automaton with Henon chaotic map, the designed cryptosystem demonstrates unprecedented results in cryptography.
Digital image communication over public networks requires a high level of security to protect picture elements that represent information. Security is an important and challenging issue that can be solved using cryptography techniques. Generally, image encryption techniques are based on multiple rounds and iterations. In this paper, a secured lightweight cryptosystem is designed based on lookup table operations that reduce computational overhead, resource requirement and power consumption compared to traditional security mechanisms. In this context, one-dimensional elementary cellular automaton has been combined with Henon chaotic map to design a cryptosystem, which can produce unprecedented results in cryptography. Initially, state attractors for rule space are investigated and analyzed in Wolfram's cellular automata to extract the properties and functional abilities to perform cryptographic operations. A novel algorithm of keyed transposition cipher is applied to digital image in P-Box module to produce shuffled image. Then, the extracted properties of ECA are preserved in a tabular form and further used in the diffusion process. Based on the simulation and comparison with other existing mechanisms, it is evident that the proposed algorithm is promising and obstructive to all kinds of statistical attacks, and it yields security primacy in various areas of cryptography. Encryption/Decryption is based on indexed based lookup tables principal using ECA and can be easily implemented using logic gates. The proposed algorithm provides confidentiality and can be adopted in IoT networks that require lightweight cryptography modules. Experimental results of color and gray images demonstrate flourishing results in the real-time environment of cryptography.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available