4.6 Article

Synthesis, Anticonvulsant, and Antinociceptive Activity of New 3-(2-Chlorophenyl)- and 3-(3-Chlorophenyl)-2,5-dioxo-pyrrolidin-1-yl-acetamides

Journal

MOLECULES
Volume 26, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/molecules26061564

Keywords

anticonvulsant activity; antinociceptive activity; pyrrolidine-2; 5-dione; amides

Funding

  1. Funds for Statutory Activity of Jagiellonian University Medical College [N42/DBS/000020, K/DSC/005295, N42/DBS/000048]
  2. National Science Centre, Poland [2017/25/B/NZ7/01048]

Ask authors/readers for more resources

A novel series of 3-(2-chlorophenyl)- and 3-(3-chlorophenyl)-pyrrolidine-2,5-dione-acetamide derivatives were synthesized and evaluated for their anticonvulsant and analgesic activities. The most active compound showed promising results in the acute models of epilepsy and tonic pain, with a potential mechanism of action involving interaction with neuronal voltage-sensitive sodium and L-type calcium channels. Additionally, the compounds exhibited no significant cytotoxic effects in neurotoxicity and hepatotoxicity assays.
The new series of 3-(2-chlorophenyl)- and 3-(3-chlorophenyl)-pyrrolidine-2,5-dione-acetamide derivatives as potential anticonvulsant and analgesic agents was synthesized. The compounds obtained were evaluated in the following acute models of epilepsy: maximal electroshock (MES), psychomotor (6 Hz, 32 mA), and subcutaneous pentylenetetrazole (scPTZ) seizure tests. The most active substance-3-(2-chlorophenyl)-1-{2-[4-(4-fluorophenyl)piperazin-1-yl]-2-oxoethyl}-pyrrolidine-2,5-dione (6) showed more beneficial ED50 and protective index values than the reference drug-valproic acid (68.30 mg/kg vs. 252.74 mg/kg in the MES test and 28.20 mg/kg vs. 130.64 mg/kg in the 6 Hz (32 mA) test, respectively). Since anticonvulsant drugs are often effective in neuropathic pain management, the antinociceptive activity for two the promising compounds-namely, 6 and 19-was also investigated in the formalin model of tonic pain. Additionally, for the aforementioned compounds, the affinity for the voltage-gated sodium and calcium channels, as well as GABA(A) and TRPV1 receptors, was determined. As a result, the most probable molecular mechanism of action for the most active compound 6 relies on interaction with neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Compounds 6 and 19 were also tested for their neurotoxic and hepatotoxic properties and showed no significant cytotoxic effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available