4.6 Article

UV-Cured Antibacterial Hydrogels Based on PEG and Monodisperse Heterofunctional Bis-MPA Dendrimers

Journal

MOLECULES
Volume 26, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/molecules26082364

Keywords

dendrimers; hydrogels; antibacterial; poly (ethylene glycol); thiol-ene

Funding

  1. Wallenberg Academy Fellow [2012-0196]
  2. Swedish Research Council [2014-3876]
  3. China Scholarship Council
  4. Wilhelm Beckers Jubileumsfond

Ask authors/readers for more resources

In this study, second generation antibacterial dendrimers were synthesized and used to fabricate antibacterial hydrogels with excellent swelling and mechanical properties. The hydrogels showed strong antibacterial activity against both gram-positive and gram-negative bacteria, as well as good biocompatibility towards human fibroblasts and mouse monocytes.
Bacterial infections are one of the major threats to human health due to the raising crisis of antibiotic resistance. Herein, second generation antibacterial heterofunctional dendrimers based on 2,2-bis(methylol)propionic acid were synthesized. The dendrimers possessed six alkenes and 12 ammonium end-groups per molecule and were used to fabricate antibacterial hydrogels together with dithiol-functional polyethylene glycol (mol wt of 2, 6 and 10 kDa) as crosslinkers via thiol-ene chemistry. The network formation can be completed within 10 s upon UV-irradiation as determined by the stabilization of the storage modulus in a rheometer. The hydrogels swelled in aqueous media and could be functionalized with the N-hydroxysuccinimide ester of the dye disperse red 13, which allowed for visually studying the degradation of the hydrogels through the hydrolysis of the ester bonds of the dendritic component. The maximum swelling ratio of the gels was recorded within 4-8 h and the swelling ratios increased with higher molecular weight of the polyethylene glycol crosslinker. The gel formed with 10 kDa polyethylene glycol crosslinker showed the highest swelling ratio of 40 and good mechanical properties, with a storage modulus of 8 kPa. In addition, the hydrogels exhibited good biocompatibility towards both human fibroblasts and mouse monocytes, while showing strong antibacterial activity against both gram-positive and gram-negative bacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available