4.7 Article

An adaptive sensor placement algorithm for structural health monitoring based on multi-objective iterative optimization using weight factor updating

Journal

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
Volume 151, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2020.107363

Keywords

Adaptive sensor placement algorithm; Structural health monitoring; Multi-objective; Iterative optimization; Weight factor updating

Funding

  1. National Natural Science Foundation of China [11972355]
  2. Young Elite Scientists Sponsorship Program by China Association for Science and Technology [2019QNRC001]
  3. Beijing Natural Science Foundation, China [3182042]

Ask authors/readers for more resources

A new sensor placement algorithm based on an iterative updating process is proposed in this study, combining different optimal sensor placement methods using adaptive weight factors and solved by a genetic algorithm.
A single method that does not consider all performances of mode testing is typically inadequate for determining the optimal sensor placement. However, if different sensor placement methods are applied together, the multi-objective optimization problem will incur high computational costs. Although transforming multi-objective optimization into single-objective optimization by defining weight factors is convenient, this artificial setting disturbs the inherent characteristics of different methods in combined optimization. To overcome these shortcomings in solving a multi-objective problem for sensor locations, a sensor placement algorithm for structural health monitoring based on an iterative updating process is proposed. This method can be applied to different structures owing to the use of adaptive weight factors in the combined objective. In this study, considering different optimal sensor placement methods from their own perspectives, a novel combined fitness function using weight factors and normalization is constructed and solved by a genetic algorithm. Instead of comparison formats, first, the equivalent formats of six well-known sensor placement methods are used for optimization. Considering the effects of the order differences of different objectives, the multi-objective function is transformed into a single-objective optimization problem. Furthermore, an adaptive algorithm using an iterative process involving weight-factor updating is established; thus, the influence of the disturbance originating from directly deciding the weight factor is reduced to the greatest extent. The weight-factor updating process that allows this algorithm to achieve high accuracy and rapid convergence is described in detail. Finally, three engineering numerical examples are considered to demonstrate the effectiveness and feasibility of the proposed algorithm under five sensor placement criteria, including the sensor distribution index and the ratio of the same positions. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available