4.7 Article

Influence of heat treatments on AlSi10Mg specimens manufactured with different laser powder bed fusion machines

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2021.141371

Keywords

Additive manufacturing; Laser powder bed fusion; Heat treatment; AlSi10Mg; Mechanical properties

Ask authors/readers for more resources

This study investigated the effects of post process heat treatments on the mechanical properties of AlSi10Mg specimens manufactured with Laser Powder Bed Fusion. The study found that while strength properties could be homogenized through heat treatments, ductility properties were still affected by material defects. Even slight differences in porosity could significantly impact ductility properties.
Mechanical properties such as ultimate tensile strength, yield strength, and tensile elongation of parts manufactured with Laser Powder Bed Fusion (L-PBF) can differ significantly after the building process limiting the advantage of production flexibility of that technology. At this background, the present work investigated the influence of post process heat treatments (HT) on microstructure, hardness, and tensile properties of AlSi10Mg specimens in different As-built (AB) conditions. For this purpose, two superordinate aspects were covered within this study. Firstly, various HTs were performed on specimens built-up with the same L-PBF machine applying the same parameter set-up. Results of tensile tests and hardness measurements were discussed considering the microstructural changes examined with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy as well as X-ray diffraction, and gathered in a material data map. Based on the observed microstructural changes and a calculated quality index which comprises strength and ductility properties, three HTs were selected for the second part of this work. Therein, the effect of these HTs on specimens fabricated with overall three L-PBF machines working with different raw materials, process parameters, and build-up strategies was studied. Specimens characterization included porosity measurements, the evaluation of material defects, microstructure analysis via SEM, hardness measurements, and tensile tests. It was found that strength properties in the AB condition revealed appreciable deviations: Values of yield strength and ultimate tensile strength were from 228 to 292 MPa and from 346 to 484 MPa, respectively. Whereas heat treated specimens at 300 degrees C for 0.5 as well as 2 h only exhibited slight differences in strength, a complete homogenization of strength properties was obtained after conducting a T6 HT. Nevertheless, ductility was not homogenized after heat treating caused by the presence of material defects such as keyhole pores and lack of fusion defects. It was shown that even slight differences in porosity determined in cross-sections can significantly affect ductility properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available