4.6 Article

Plasma proteomic profile associated with platelet dysfunction after trauma

Journal

JOURNAL OF THROMBOSIS AND HAEMOSTASIS
Volume 19, Issue 7, Pages 1666-1675

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1111/jth.15316

Keywords

blood platelet disorders; hemorrhage; hemostasis; multiple trauma; proteomics

Funding

  1. National Heart, Lung, and Blood Institute [4 K12 HL 087165, 1K08HL146840-01A1]

Ask authors/readers for more resources

This study describes the changes in plasma proteomic profile associated with platelet dysfunction after trauma, identifying twelve proteins with significant differences. The findings suggest that patients with platelet dysfunction are more severely injured but otherwise similar to those with retained platelet function.
Background Coagulopathic bleeding is a major cause of mortality after trauma, and platelet dysfunction contributes to this problem. The causes of platelet dysfunction are relatively unknown, but a great deal can be learned from the plasma environment about the possible pathways involved. Objective Describe the changes in plasma proteomic profile associated with platelet dysfunction after trauma. Methods Citrated blood was collected from severely injured trauma patients at the time of their arrival to the Emergency Department. Samples were collected from 110 patients, and a subset of twenty-four patients was identified by a preserved (n = 12) or severely impaired (n = 12) platelet aggregation response to five different agonists. Untargeted proteomics was performed by nanoflow liquid chromatography tandem mass spectrometry. Protein abundance levels for each patient were normalized to total protein concentration to control for hemodilution by crystalloid fluid infusion prior to blood draw. Results Patients with platelet dysfunction were more severely injured but otherwise demographically similar to those with retained platelet function. Of 232 proteins detected, twelve were significantly different between groups. These proteins fall into several broad categories related to platelet function, including microvascular obstruction with platelet activation, immune activation, and protease activation. Conclusions This observational study provides a description of the change in proteomic profile associated with platelet dysfunction after trauma and identifies twelve proteins with the most profound changes. The pathways involving these proteins are salient targets for immediate investigation to better understand platelet dysfunction after trauma and identify targets for intervention.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available