4.4 Article

Electric vehicle battery-ultracapacitor hybrid energy storage system and drivetrain optimization for a real-world urban driving scenario

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s40430-021-02975-w

Keywords

Electric vehicle (EV); Hybrid energy storage system (HESS); Genetic algorithm optimization; Real-world driving cycle

Funding

  1. Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES)
  2. National Council for Scientific and Technological Development (CNPq)
  3. State of Sao Paulo Research Foundation (FAPESP)
  4. University of Campinas (UNICAMP)

Ask authors/readers for more resources

This study proposed a hybrid energy storage system (HESS) combining battery and ultracapacitor to improve the driving range of electric vehicles. A genetic algorithm was used to optimize the parameters of the HESS, resulting in the identification of the optimal vehicle configurations.
A battery has normally a high energy density with low power density, while an ultracapacitor has a high power density but a low energy density. Therefore, this paper has been proposed to associate more than one storage technology generating a hybrid energy storage system (HESS), which has battery and ultracapacitor, whose objective is to improve the electric vehicle (EV) driving range. The HESS parameters have been evaluated in a configuration of EV powered by two in-wheel electric motors, coupled straight into the front wheels, and by a unique EM, connected to a differential transmission to drive the rear wheels. Moreover, this paper considers a real-world drive cycle based on the urban driving behavior of Campinas city, one of the most populous cities in Brazil. Aiming to minimize the HESS size and enhance the EV driving range, an optimization problem was formulated and solved using a genetic algorithm technique, in which the EV drivetrain parameters and HESS components and control are optimized. Finally, the obtained Pareto frontier defines the optimum EV configurations, in which the best-selected configurations were able to perform up to 188 km with a 418 kg HESS (maximum drive range solution), or 82.75 km with a 146.58 kg HESS (minimum HESS solution) and 319 km with a 188.43 kg HESS (best trade-off solution), without presenting performance losses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available