4.8 Article

Interfacial Chemistry Enables Stable Cycling of All-Solid-State Li Metal Batteries at High Current Densities

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 143, Issue 17, Pages 6542-6550

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.1c00752

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-EE0007762]
  2. Robert A. Welch Foundation, Houston, TX [F-1066]
  3. TAFEL [TAFEL UTA17-001111]
  4. Deutsche Forschungsgemeinschaft (DFG) [MA 5039/4-1, 357753796]

Ask authors/readers for more resources

The addition of Mg(ClO4)(2) into PEO-based composite electrolyte effectively regulates Li+ ion transport and enhances the Li+ ion mobility, leading to the formation of a conductive Li2MgCl4/LiF interfacial layer that homogenizes Li+ flux and increases the critical current density to a record 2 mA cm(-2). These findings highlight the importance of surface chemistry and interfacial engineering in designing high-current-density all-solid-state Li metal batteries.
The application of flexible, robust, and low-cost solid polymer electrolytes in next-generation all-solid-state lithium metal batteries has been hindered by the low room-temperature ionic conductivity of these electrolytes and the small critical current density of the batteries. Both issues stem from the low mobility of Li+ ions in the polymer and the fast lithium dendrite growth at the Li metal/electrolyte interface. Herein, Mg(ClO4)(2) is demonstrated to be an effective additive in the poly(ethylene oxide) (PEO)-based composite electrolyte to regulate Li+ ion transport and manipulate the Li metal/electrolyte interfacial performance. By combining experimental and computational studies, we show that Mg2+ ions are immobile in a PEO host due to coordination with ether oxygen and anions of lithium salts, which enhances the mobility of Li+ ions; more importantly, an in-situ formed Li+-conducting Li2MgCl4/LiF interfacial layer homogenizes the Li+ flux during plating and increases the critical current density up to a record 2 mA cm(-2). Each of these factors contributes to the assembly of competitive all-solid-state Li/Li, LiFePO4/Li, and LiNi0.8Mn0.1Co0.1O2/Li cells, demonstrating the importance of surface chemistry and interfacial engineering in the design of all-solid-state Li metal batteries for high-current-density applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available