4.3 Article

Design and Dynamic Analysis of Rigid Foldable Aeroshells for Atmospheric Entry

Journal

JOURNAL OF SPACECRAFT AND ROCKETS
Volume 58, Issue 3, Pages 741-753

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.A34845

Keywords

-

Funding

  1. Excellence Fund for Frontier Research of Imperial College London

Ask authors/readers for more resources

A novel rigid deployable aeroshell architecture has been developed, utilizing origami principles to ensure efficient flat stowage during launch and repeatable deployment. By analyzing the dynamic behavior of the optimal design, it was found that panel geometry plays a crucial role in achieving robust, repeatable, and controllable deployment. Experimental testing of a scale model verified the modeled results.
A novel rigid deployable aeroshell architecture has been developed, where rigid panels with a thermal protection system layer are connected between retractable ribs. Following origami principles, an optimal fold pattern is selected and imposed on the panels to ensure efficient flat stowage during launch and repeatable deployment. The design process includes minimizing the number of folds to reduce stacking height and maximizing the angles between each fold line to avoid an unfavorable aerothermodynamic response. The dynamic behavior of the optimal design is analyzed with the aid of a dynamic multibody analysis model. Results from the dynamic model show that the process of deployment is highly sensitive to panel geometry (especially panel thickness and hinge design). Robust, repeatable, and controllable deployment is most readily achieved with a small (but nonzero) panel thickness and selection of interpanel hinges, which allow a degree of over-rotation, avoiding a premature hard stop, which would otherwise prevent full deployment. Modeled results have been verified through experimental testing of a 0.4-m-diam scale model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available