4.8 Article

Interfacial Electronic Properties and Tunable Contact Types in Graphene/Janus MoGeSiN4 Heterostructures

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 12, Issue 16, Pages 3934-3940

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.1c00682

Keywords

-

Funding

  1. Vietnam National Foundation for Science and Technology Development (NAFOSTED) [103.01-2019.05]

Ask authors/readers for more resources

In this study, ultra-thin van der Waals heterostructures were constructed between graphene and a new 2D Janus MoGeSiN4 material to investigate their interfacial electronic properties and tunable Schottky barriers. The results showed that the graphene/MoGeSiN4 heterostructures have high carrier mobility, making them suitable for high-speed nanoelectronic devices. Depending on the stacking patterns, either an n-type or a p-type Schottky contact is formed at the interface, which can be transformed under strain engineering and electric field.
Two-dimensional MoSi2N4 is an emerging class of 2D MA(2)N(4) family, which has recently been synthesized in experiment. Herein, we construct ultrathin van der Waals heterostructures between graphene and a new 2D Janus MoGeSiN4 material and investigate their interfacial electronic properties and tunable Schottky barriers and contact types using first-principles calculations. The GR/MoGeSiN4 vdWHs are expected to be energetically favorable and stable. The high carrier mobility in graphene/MoGeSiN4 vdWHs makes them suitable for high-speed nanoelectronic devices. Furthermore, depending on the stacking patterns, either an n-type or a p-type Schottky contact is formed at the GR/ MoGeSiN4 interface. The strain engineering and electric field can lead to the transformation from an n-type to a p-type Schottky contact or from Schottky to Ohmic contact in graphene/MoGeSiN4 heterostructure. These findings provide useful guidance for designing controllable Schottky nanodevices based on graphene/MoGeSiN4 heterostructures with high-performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available