4.8 Article

Breaking the Coupled Cluster Barrier for Machine-Learned Potentials of Large Molecules: The Case of 15-Atom Acetylacetone

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 12, Issue 20, Pages 4902-4909

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.1c01142

Keywords

-

Funding

  1. ARO, DURIP grant [W911NF-14-1-0471]
  2. NASA [80NSSC20K0360]

Ask authors/readers for more resources

The study represents a significant advancement in applying Delta machine learning method to the challenging case of acetylacetone, successfully deriving a new potential energy surface which shows a barrier height close to the benchmark value.
Machine-learned potential energy surfaces (PESs) for molecules with more than 10 atoms are typically forced to use lower-level electronic structure methods such as density functional theory (DFT) and second-order Moller-Plesset perturbation theory (MP2). While these are efficient and realistic, they fall short of the accuracy of the gold standard coupled-cluster method, especially with respect to reaction and isomerization barriers. We report a major step forward in applying a Delta-machine learning method to the challenging case of acetylacetone, whose MP2 barrier height for H-atom transfer is low by roughly 1.1 kcal/mol relative to the benchmark CCSD(T) barrier of 3.2 kcal/mol. From a database of 2151 local CCSD(T) energies and training with as few as 430 energies, we obtain a new PES with a barrier of 3.5 kcal/mol in agreement with the LCCSD(T) barrier of 3.5 kcal/mol and close to the benchmark value. Tunneling splittings due to H-atom transfer are calculated using this new PES, providing improved estimates over previous ones obtained using an MP2-based PES.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available