4.5 Article

Characterization of the Interface Structure of 1-Ethyl-2,3-alkylimidazolium Bis(trifluoromethylsulfonyl)imide on a Au(111) Surface with Molecular Dynamics Simulations

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 125, Issue 14, Pages 3677-3689

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.0c09994

Keywords

-

Funding

  1. National Natural Science Foundation of China [51774158, 51264021]
  2. Young and Middle-aged Academic and Technical Leader Reserve Talent Cultivation Project of Yunnan Province [2011CI013]

Ask authors/readers for more resources

The microscopic structures of ionic liquids ([Emmim]TFSI and [Emim]TFSI) on a flat Au(111) surface were studied using molecular dynamics simulations. The results show that the substitution of hydrogen on C1 by methyl groups in the imidazole ring increases the interaction between the particles. Different interaction energies of various particles lead to changes in anion conformation and cation orientation, ultimately affecting the images on Au(111) differently in the two systems. These findings provide a new perspective for studying double layer structures and deepen the understanding of interface behavior of ionic liquids.
As a new type of green electrolyte, ionic liquids have been extensively and successfully used in electrochemical systems. It is extremely important to understand the structure and characteristics of their electric double layers. The microscopic structures of room-temperature ionic liquids 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([Emmim]TFSI) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim]TFSI) were studied on a flat Au(111) surface using molecular dynamics simulations. Since the interactions of [Emmim]TFSI, [Emmim](+), and TFSI- with the Au(111) surface are stronger than those of molecules (or ions) in the [Emim]TFSI system, the linear arrangement of [Emmim]TFSI and the worm-like pattern of the [Emim]TFSI system can be found near the Au(111) surface. Meanwhile, cations are all parallel to the electrode in the [Emmim]TFSI/Au(111) system and tilted toward the surface in the [Emim]TFSI/Au(111) system. TFSI- presents trans and cis conformations in [Emim]TFSI and [Emmim]TFSI systems adjacent to Au(111), respectively. A Helmholtz-like layer structure with alternating oscillations of anionic and cationic layers can be found in the [Emim]TFSI system, while the molecular layer with cations and anions existing simultaneously can be found in [Emmim]TFSI. Our results confirm that the substitution of hydrogen on C1 by methyl groups in the imidazole ring increases the interaction between the particles. It has also been proved that the change in the anion conformation and cation orientation in the [Emmim]TFSI system can be attributed to the different interaction energies of various particles. The above reasons ultimately make the images on Au(111) different in the two systems. The results provide a new perspective for studying the structure of double layers. They are helpful in deepening the understanding of the interface behavior of ionic liquids and providing a theoretical basis for the design of functional ionic liquids that are suitable for electrochemical equipment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available