4.7 Article

Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluids

Journal

JOURNAL OF MOLECULAR LIQUIDS
Volume 329, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.molliq.2021.115517

Keywords

Nanofluid; Microrehelogy; Rheology; Single-walled carbon nanotubes; Viscosity

Funding

  1. Russian Science Foundation [20-19-00043]
  2. Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0012]
  3. Russian Science Foundation [20-19-00043] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

This study experimentally investigated the rheology and viscosity of nanofluids containing SWCNT, showing that the fluid index decreased and the consistency factor increased with increasing concentration of SWCNT. The viscosity of the nanofluids depended on the effective size of SWCNTs, and they exhibited viscoelastic properties due to the formation of a solid spatial lattice of nanotubes.
This work aims to study experimentally the rheology and viscosity of nanofluids based on ethylene glycol, water, and isopropyl alcohol containing single-walled carbon particles (SWCNT). The weight concentration of SWCNTs varied from 0.05 to 1%, the temperature varied within the range from 10 to 50 degrees C. Sodium dodecylbenzene sulfonate, polyvinylpyrrolidone, and sodium dodecyl sulfate were used as dispersants. All the studied nanofluids were characterized by non-Newtonian rheology, if only the concentration of SWCNTs was not too low. The nanofluids were either pseudoplastic or viscoplastic fluids. With the increasing concentration of SWCNTs, the fluid index decreased, while the consistency factor increased. Moreover, as the CNT concentration increased, pseudoplastic fluids could become viscoplastic. In the general case, the rheology of nanofluids also changed with increasing temperature. An important fact is that the viscosity of the studied nanofluids depends actually on the effective size of the SWCNTs. The greater their effective size, the greater the viscosity. Indirectly, the answer to the question about the reason for this behavior is given by studying the microrheology of these nanofluids. They demonstrate viscoelastic properties of the nanofluids. This behavior is associated with the formation of a solid spatial lattice of nanotubes in the bulk of nanofluid. (C) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available