4.7 Article

Deformation-induced cleaning of organically fouled membranes: Fundamentals and techno-economic assessment for spiral-wound membranes

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 626, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.memsci.2021.119169

Keywords

Reverse osmosis; Membrane fouling; Chemical cleaning; Chemical-free cleaning; Deformation-induced cleaning

Ask authors/readers for more resources

A novel chemical-free membrane cleaning method using pressure modulation to induce shear stresses for foulant detachment has been proposed. Experimental results demonstrate high cleaning efficiency on spiral-wound modules and considerable cost reduction potential.
Membrane fouling is a ubiquitous challenge in water treatment and desalination systems. Current reverse osmosis (RO) membrane cleaning technology relies on chemical processes, incurring considerable costs and generating waste streams. Here, we present a novel chemical-free membrane cleaning method applicable to commercially existing RO spiral-wound membrane modules. The method employs controlled membrane deformation through pressure modulation, which induces shear stresses at the foulant-membrane interface that lead to detachment and removal of the foulants. To investigate the effectiveness of the method, experiments on organic fouling by alginate are conducted on a flat-sheet membrane coupon followed by tests on a commercial spiral-wound module with feeds of varying fouling propensities. Cleaning durations are six-fold lower, and the experimental results demonstrate flux recoveries and cleaning efficiencies comparable to those of chemical cleaning. The experiments on the spiral-wound module indicate that this method will have applicability in industrially-relevant settings. To elucidate the underlying cleaning mechanisms, membrane deformation experiments with no flow are conducted, and in situ visualization techniques are employed for both the flat sheet and spiral-wound modules. The results show that cleaning is caused by a reduction in shear strength at the foulant-membrane interface after cycles of repeated loading, a behavior typical of fatigue. By enabling more frequent cleanings, deformation-induced cleaning is shown to considerably lower operating costs in an economic case study while offering a more sustainable and environmentally sound solution to membrane cleaning and antifouling in desalination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available