4.7 Article

Removal of phenolic contaminants from water by pervaporation

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 623, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.memsci.2020.119043

Keywords

Phenolic compounds; Pervaporation; Coupling effects

Funding

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada

Ask authors/readers for more resources

This study focused on the separation of phenolic compounds using a PEBA membrane, showing that permeation flux increased with higher feed concentrations, but the increase was less than proportional, leading to a decrease in enrichment factor. Additionally, both permeation flux and enrichment factor increased with higher temperatures. Different phenolic compounds exhibited varying permeabilities in the membrane.
The removal of phenolic compounds from water streams is of great importance due to their high toxicity, car-cinogenicity, and bioaccumulation in food chains. In this study, the separation of four representative phenolic compounds (including phenol (PhOH), p-cresol (MePhOH), p-chlorophenol (ClPhOH), and p-nitrophenol (O2NPhOH)) from aqueous solutions by pervaporation using poly(ether-b-amide) (PEBA) membrane was studied. The effects of feed concentration (up to 0.6 wt%) and operating temperature (30-70 degrees C) on the separation performance were investigated. While the permeation fluxes of phenolic compounds increased at higher feed concentrations, the increase in the flux was less than proportional, leading to a decrease in the enrichment factor. It was also shown that both the permeation flux and the enrichment factor increased with an increase in temperature. However, the permeabilities of the phenolic compounds in the membrane were impacted differently. Of particular interest were the coupling effects of co-existing phenolic compounds due to permeant-permeant interactions, which were found to be significant in permeation of multiple phenolic compounds that were relevant to practical applications. The permeation of PhOH, MePhOH and ClPhOH was all affected adversely by the presence of additional phenolic compounds in the feed solution, while the opposite was true for the permeation of slow-permeating O2NPhOH. Depending on the specific phenol solute, high-purity phenol crystals could be produced from the phenol-enriched permeate via de-sublimation in the cold trap, which was of particular interest for practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available