4.6 Review

On the austenite stability of cryogenic Ni steels: microstructural effects: a review

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 56, Issue 22, Pages 12539-12558

Publisher

SPRINGER
DOI: 10.1007/s10853-021-06068-w

Keywords

-

Funding

  1. National Key R&D Program of China [2017YFB0703001, 2017YFB0305100]
  2. National Natural Science Foundation of China [51771153, 51371147, 51790481, 51431008]
  3. Innovation Guidance Support Project for Taicang Top Research Institutes [TC2018DYDS20]
  4. Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University [CX201825]

Ask authors/readers for more resources

Austenite stability is crucial for improving the cryogenic toughness of cryogenic Ni steels, with factors such as enrichment of austenite-stabilizing elements, grain refinement, and volume fraction of austenite playing key roles. Mechanical stability is also influenced by factors such as grain orientation and dislocation multiplication, impacting the effectiveness of enhancing cryogenic toughness.
Austenite stability is essentially important in improving the cryogenic toughness of cryogenic Ni steels and guiding the development of Ni-saving cryogenic steels. The austenite stability in the cryogenic Ni steels is influenced by many microstructure features, making it a complicated issue which is lack of a systematic discussion. In this article, the microstructural effects on the thermal and mechanical stability of austenite in the cryogenic Ni steels are reviewed and discussed. The thermal stability of austenite (TSA) will be enhanced by the enrichment of austenite-stabilizing elements in the austenite which decreases the martensite-start (M-s) temperature. The grain refinement enhances the TSA by synergistically increasing the nonchemical driving force for the martensite transformation and the concentrations of austenite-stabilizing elements in the austenite. The excessive increase in the volume fraction of austenite weakens the TSA by decreasing the concentrations of austenite-stabilizing elements in the austenite. The film austenite is usually thermally more stable than the block austenite owing to its higher concentrations of austenite-stabilizing elements. The mechanical stability of austenite (MSA) is also influenced by the concentrations of austenite-stabilizing elements which affect the M-s temperature. The reports on the effect of grain size of austenite on the MSA are inconsistent. Both negligible and important effects of the grain size of austenite on the MSA are analyzed. The grain orientation of austenite affects the MSA via changing the Schmid factor and the additional driving force for the martensite transformation. The orientation which yields a larger value of Schmid factor would exhibit a lower MSA. The MSA is affected by the matrix or the neighboring phase due to the stress and strain partitioning among austenite and other constituent phases. The dislocation multiplication could weaken the MSA by assisting the nucleation and growth of martensite embryo and enhance the MSA by hindering the motion of embryo/austenite interfaces when dislocation density is sufficiently large. Austenite with a combination of a high TSA and a moderate or high MSA is considered to be effective strategies to enhance cryogenic toughness of the cryogenic Ni steels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available