4.5 Article

Study on Fatigue Crack Propagation and Fracture Characterization of 7050-T7451 Friction Stir Welded Joints

Journal

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
Volume 30, Issue 8, Pages 5625-5632

Publisher

SPRINGER
DOI: 10.1007/s11665-021-05797-y

Keywords

aluminum alloy; friction stir welding; fatigue crack propagation; fracture surface

Funding

  1. Shandong Provincial Natural Science Foundation, China [ZR2016JL017]

Ask authors/readers for more resources

The fatigue crack propagation behavior of FSW welded 7050-T7451 joints was studied using compact tensile specimens. The FCP rate in different regions of the joint varied, with different fracture morphologies observed at different stages of FCP. Overall, the fracture characteristics evolved from tearing ridges and river patterns to dimple fractures and fatigue striations as FCP progressed through its three stages.
The fatigue crack propagation (FCP) behavior of FSW welded 7050-T7451 joints was studied using compact tensile specimens. Based on Paris law and three-stage theory of FCP, the FCP rate of joint was obtained by data fitting and calculation. The fracture morphologies at different stages of FCP were characterized by metallography and scanning electron microscopy (SEM). Results showed that the FCP rate in each region for FSW joint was as follows: heat affected zone (HAZ) > weld nugget zone (WNZ) > base metal (BM). In the first stage of FCP, the fracture morphologies of BM and HAZ were mainly tearing ridges and river pattern. There were a small number of dimples on the fracture of BM, but no dimples on the fracture of HAZ. In the second stage of FCP, the fatigue striations of the BM were denser and finer than those in the HAZ, and have dimple fracture characteristics. In the third stage of FCP, dimples still existed in the fracture surface of the BM, and the fatigue striations disappeared. The HAZ was dominated by lamellar tearing and cleavage fracture without dimples. During the three stages of FCP, the fracture morphology of the WNZ in the first and second stages was fine dimple fracture with significant equiaxed deep dimple morphology. In the third stage, the fracture dimple in the WNZ changed from equiaxed deep dimples to tearing dimples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available