4.5 Article

Evaluation of bioefficacy potential of entomopathogenic fungi against the whitefly (Bemisia tabaci Genn.) on cotton under polyhouse and field conditions

Journal

JOURNAL OF INVERTEBRATE PATHOLOGY
Volume 183, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jip.2021.107618

Keywords

Whitefly; Myco-insecticides; Bioefficacy index; Polyhouse efficacy; Field efficacy; Entomopathogenic fungi-Bemisia tabaci-Cotton-Microbial control

Categories

Funding

  1. ICAR-Central Institute for Cotton Research

Ask authors/readers for more resources

The whitefly is causing serious problems on Bt cotton, and using entomopathogenic fungi as part of integrated pest management can effectively control the whitefly population. Experiments in different conditions have shown that certain strains of entomopathogenic fungi exhibit higher virulence against whitefly nymphs, aiding in effective whitefly management.
The whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), is becoming a serious problem on Bt cotton. It causes enormous crop loss through its direct feeding and as a vector of cotton leaf curl virus. Chemical-dependent management is harming the environment and increased insecticide resistance is often observed in the fields. Identification of most virulent strains of entomopathogenic fungi (EPF) is essential to serve as an important component of an IPM program for management of B. tabaci. Compared to B. tabaci adults, the nymphal stage is reported to be more susceptible to entomopathogens, and targeting nymphs also helps vector management. We evaluated the bioefficacy of EPF and chemical pesticides against nymphs of B. tabaci on Bt cotton under polyhouse and field conditions. The bioefficacy index (BI) was considered as a mechanism to select the most effective EPF strains for field evaluation. The highest nymphal mortality under polyhouse conditions was recorded for Metarhizium anisopliae NA-01299 (86.7%), Beauveria bassiana MT-4511 (85.1%), Cordyceps javanica IT-10498 (81.1%), IT-10499 (81%), and B. bassiana NA-0409 (78.2%) relative to other EPF strains, spiromesifen (69.6%), buprofezin (62.2%) and pyriproxyfen (52.7%) at 7-days-post-spray treatment (DAS). However, among all the EPF, the highest BI was recorded in C. javanica IT-10499 (77%), IT-10495 (75.4%), Fusarium verticillioides IT-10493 (74.6%), and B. bassiana MT-4511 (73.1%). The pooled data of two-year field trials (2017-18 & 2018-19) revealed that the highest nymphal mortality was recorded for MT-4511 (85%), IT-10499 (83.2%), and pyriproxyfen 10% EC (78.6%) at 7-DAS. The BI-based selection of EPF proved to be a useful predictor of field efficacy. A sequential spray of the selected EPF would be a vital approach for resilient and sustainable integrated management of the B. tabaci nymphal population under field conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available