4.7 Review

Effect of soil amendments on trace element-mediated oxidative stress in plants: Meta-analysis and mechanistic interpretations

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 407, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.124881

Keywords

Literature meta-analysis; Physiological parameters; Tolerance mechanisms; Stress parameters

Ask authors/readers for more resources

This study critically elucidated the impact of soil amendments on trace-element-induced oxidative stress in plants, revealing distinct variations under different conditions. Specifically, when trace elements and soil amendments are co-applied, plant tolerance and growth parameters are enhanced, while stress parameters are reduced.
During the last two decades, the use of soil amendments has gained high attention due to their role in governing trace element biogeochemistry in the soil. Majority of the studies dealing with soil amendments focused on the soil-plant transfer of trace elements, their compartmentation inside the plants and associated toxic effects. However, there is comparatively limited data regarding the effects of soil amendments on trace-element-induced oxidative stress (variations in stress and tolerance parameters) in plants. Therefore, this review, for the first time, critically elucidates the broad and specific trends in literature data of stress, tolerance and growth parameters under co-application of trace elements and soil amendments. For this purpose, a total of 3120 plant response items from literature data were collected/analyzed. The meta-analysis revealed an overall decrease in stress parameters (reactive oxygen species, membrane damage and lipid peroxidation), while an increase in tolerance parameters (antioxidants) and growth parameters (pigment contents). However, these general trends vary greatly with respect to different types of amendments, trace elements, plant species, plant organs and exposure cultures. In addition, the trends also varied for different types of response items of stress, tolerance and growth parameters (e.g., POD vs CAT, H2O2 vs O-2). Manuscript critically discusses some mechanistic explanations for these general and specific trends in literature data. Finally, this review proposed key research gaps and important future perspectives. All the aspects discussed in this review have been strengthened with 23 Tables and 7 Figures. The research gaps and scientific queries established in this review based on meta-analysis of literature data will open new aspects of future research and discussion in the fields of ecotoxicology, stress physiology and remediation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available