4.7 Article

Periphyton as an important source of methylmercury in Everglades water and food web

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 410, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.124551

Keywords

Periphyton; Methylmercury; Water; Food web; Everglades

Funding

  1. Natural Science Foundation of China [21677061, 91543103]
  2. NSF Program of the USA [ECS1905239]

Ask authors/readers for more resources

Periphyton in the Florida Everglades plays a significant role in the distribution and bioaccumulation of MeHg in water systems.
Periphyton is ubiquitous in Florida Everglades and has a profound effect on mercury (Hg) cycling. Enhanced methylmercury (MeHg) production in periphyton has been well documented, but the re-distribution of MeHg from periphyton remains unknown. In this study, periphyton, sediments, surface water, periphyton overlying water, and periphyton porewater were collected from Everglades for analyzing the distribution of MeHg and total Hg (THg). Results showed that there were no significant differences in THg and MeHg in different types of periphyton, but they all displayed higher MeHg levels than sediments. MeHg distribution coefficients (logkd) in periphyton were lower than in sediments, suggesting that periphyton MeHg could be more labile entering aquatic cycling and bioaccumulation. In water, the more the distance of water samples taken from periphyton, the lower the MeHg and dissolved organic carbon concentrations were detected. In extracellular polymeric substances of periphyton, MeHg in colloidal fractions was significantly higher than that in capsular fractions. It was estimated that approximately 10% (or 1.35 kg) of periphyton MeHg were passed on to mosquitofish entering the food web during wet season, contributing 73% of total Hg stocked in mosquitofish. These results revealed the importance of periphyton on water MeHg distribution and MeHg bioaccumulation in Everglades.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available