4.4 Article

Machine Learning-Based Improved Pressure-Volume-Temperature Correlations for Black Oil Reservoirs

Publisher

ASME
DOI: 10.1115/1.4050579

Keywords

PVT correlations; functional network; particle swarm optimization; machine learning; oil; gas reservoirs; petroleum engineering; petroleum wells-drilling; production; construction

Categories

Ask authors/readers for more resources

The study demonstrates the use of machine learning techniques to predict PVT properties of crude oil, with proposed models showing higher accuracy and outperforming previous ones, as well as other commonly used machine learning techniques.
Pressure-volume-temperature (PVT) properties of crude oil are considered the most important properties in petroleum engineering applications as they are virtually used in every reservoir and production engineering calculation. Determination of these properties in the laboratory is the most accurate way to obtain a representative value, at the same time, it is very expensive. However, in the absence of such facilities, other approaches such as analytical solutions and empirical correlations are used to estimate the PVT properties. This study demonstrates the combined use of two machine learning (ML) technique, viz., functional network (FN) coupled with particle swarm optimization (PSO) in predicting the black oil PVT properties such as bubble point pressure (P-b), oil formation volume factor at Pb, and oil viscosity at Pb. This study also proposes new mathematical models derived from the coupled FN-PSO model to estimate these properties. The use of proposed mathematical models does not need any ML engine for the execution. A total of 760 data points collected from the different sources were preprocessed and utilized to build and train the machine learning models. The data utilized covered a wide range of values that are quite reasonable in petroleum engineering applications. The performances of the developed models were tested against the most used empirical correlations. The results showed that the proposed PVT models outperformed previous models by demonstrating an error of up to 2%. The proposed FN-PSO models were also compared with other ML techniques such as an artificial neural network, support vector regression, and adaptive neuro-fuzzy inference system, and the results showed that proposed FN-PSO models outperformed other ML techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available