4.5 Review

Plasmid-mediated quinolone resistance in Enterobacteriaceae: a systematic review with a focus on Mediterranean countries

Publisher

SPRINGER
DOI: 10.1007/s10096-016-2847-x

Keywords

-

Ask authors/readers for more resources

Quinolones are a family of synthetic broad-spectrum antimicrobial drugs. These molecules have been widely prescribed to treat various infectious diseases and have been classified into several generations based on their spectrum of activity. Quinolones inhibit bacterial DNA synthesis by interfering with the action of DNA gyrase and topoisomerase IV. Mutations in the genes encoding these targets are the most common mechanisms of high-level fluoroquinolone resistance. Moreover, three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998 and include Qnr proteins, the aminoglycoside acetyltransferase AAC(6')-Ib-cr, and plasmid-mediated efflux pumps QepA and OqxAB. Plasmids with these mechanisms often encode additional antimicrobial resistance (extended spectrum beta-lactamases [ESBLs] and plasmidic AmpC [pAmpC] -lactamases) and can transfer multidrug resistance. The PMQR determinants are disseminated in Mediterranean countries with prevalence relatively high depending on the sources and the regions, highlighting the necessity of long-term surveillance for the future monitoring of trends in the occurrence of PMQR genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available