4.7 Article

Bond dissociation energies of lanthanide sulfides and selenides

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 154, Issue 12, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0042695

Keywords

-

Funding

  1. National Science Foundation [CHE-1952924]

Ask authors/readers for more resources

Resonant two-photon ionization spectroscopy was used to observe sharp predissociation thresholds in lanthanide sulfides and selenides, showing that these thresholds coincide with true 0 K bond dissociation energies. Measurements of the 0 K gaseous heat of formation for each molecule, ionization energies, and bond dissociation energies were reported. Trends in bonding for the lanthanide sulfides and selenides were discussed, with transition metal sulfides found to be 15.6% more strongly bound than corresponding selenides.
Resonant two-photon ionization spectroscopy has been employed to observe sharp predissociation thresholds in the spectra of the lanthanide sulfides and selenides for the 4f metals Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Lu. As these molecules possess a large density of electronic states near the ground separated atom limit, these predissociation thresholds are argued to coincide with the true 0 K bond dissociation energies (BDEs). This is because spin-orbit and nonadiabatic couplings among these states allow the molecules to predissociate rapidly when the BDE is reached or exceeded. The measured BDEs, in eV, are as follows: 5.230(3) (PrS), 4.820(3) (NdS), 4.011(17) (SmS), 3.811(8) (EuS), 5.282(5) (GdS), 5.292(3) (TbS), 4.298(3) (DyS), 4.251(3) (HoS), 4.262(3) (ErS), 5.189(3) (LuS), 4.496(3) (PrSe), 4.099(3) (NdSe), 3.495(17) (SmSe), 3.319(3) (EuSe), 4.606(3) (GdSe), 4.600(6) (TbSe), 3.602(3) (DySe), 3.562(3) (HoSe), 3.587(3) (ErSe), and 4.599(6) (LuSe). Through the use of thermochemical cycles, the 0 K gaseous heat of formation, Delta fH0K circle, is reported for each molecule. A threshold corresponding to the onset of two-photon ionization in EuSe was also observed, providing the ionization energy of EuSe as 6.483(10) eV. Through a thermochemical cycle and the above reported BDE of the neutral EuSe molecule, the BDE for the Eu+-Se cation was also determined as D-0(Eu+-Se) = 2.506(10) eV. Bonding trends of the lanthanide sulfides and selenides are discussed. Our previous observation that the transition metal sulfides are 15.6% more strongly bound than the corresponding selenides continues to hold true for the lanthanides as well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available