4.5 Article

Alterations in the Nrf2-Keap1 signaling pathway and its downstream target genes in rat brain under stress

Journal

BRAIN RESEARCH
Volume 1602, Issue -, Pages 20-31

Publisher

ELSEVIER
DOI: 10.1016/j.brainres.2015.01.010

Keywords

Behavior; Hippocampus; Prefrontal cortex; Oxidative stress; Nrf2; Keap1; NFkB

Categories

Funding

  1. Ministry of Education, Science and Technological Development of the Republic of Serbia [III41029]

Ask authors/readers for more resources

Knowledge of the antioxidant defense in the stress-responding structures of the CNS is of crucial importance, since oxidative damage is a phenomenon accompanying many stress-related disorders. Regulation of antioxidative and anti-inflammatory defense through Nrf2 (nuclear factor 2 eritroid related factor 2) pathway has emerged as a promising approach for neuroprotection. In this study, we used chronic social isolation of male Wistar rats to induce depressive-like behavior. We hypothesized that Nrf2 Keap1 pathway is compromised in the limbic brain after prolonged stress. Since subcellular trafficking of Nrf2 and its inhibitor Keap1 (Kelch ECH associating protein 1) is essential for the activation of Nrf2, we determined their protein level in cytosolic and nuclear comp& linents of hippocampus and prefrontal cortex (PEG). We also determined mRNA levels of Nr12-regulated genes involved in the production and utilization of glutathione, glutamate cysteine ligase (Gclm), glutathione S-transferase (Gsta3) and glutathione reductase (Gsr). Our results showed that chronic isolation induced anxiety and depressive-like behavior, decreased Nrf2 and in parallel increased Keap1 and nuclear factor kappa B (NF kappa B) in the hippocampus, which were not accompanied by expression profiles of Nrf2-regulated genes. Chronically stressed rats challenged with acute stress failed to induce any response of examined genes in either of brain structures, even though Nrf2/Keap1 was altered, while in naive animals Nrf2 activity corresponded witli an expression of Nrf2-regulated genes. Our results reveal maladaptive character of chronic stress at Nrf2/Keap1 level followed by pro-inflammatory conditions, and suggest a possible role of these alterations in pathogenesis of depressive/anxiety disorders. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available