4.6 Article

Compressive Strength of Iliac Bone ECM Is Not Reduced in Osteogenesis Imperfecta and Increases With Mineralization

Journal

JOURNAL OF BONE AND MINERAL RESEARCH
Volume 36, Issue 7, Pages 1364-1375

Publisher

WILEY
DOI: 10.1002/jbmr.4286

Keywords

OSTEOGENESIS IMPERFECTA; MICROPILLAR COMPRESSION; NANOINDENTATION; MINERALIZATION; BIOMECHANICS

Funding

  1. Swiss National Science Foundation (SNF) [165510, 174192]
  2. SFA PHRT IDoc grant [2017-304]
  3. Mereo BioPharma
  4. Shriners Hospitals for Children
  5. FRQS Programme de Bourses de Chercheur

Ask authors/readers for more resources

This study compares the mechanical properties of osteogenesis imperfecta (OI) bone with healthy control bone, finding that OI bone has a higher degree of mineralization and significantly increased compressive strength at the extracellular matrix (ECM) level with increased mineral-to-matrix ratio.
Osteogenesis imperfecta (OI) is an inheritable, genetic, and collagen-related disorder leading to an increase in bone fragility, but the origin of its brittle behavior is unclear. Because of its complex hierarchical structure, bone behaves differently at various length scales. This study aims to compare mechanical properties of human OI bone with healthy control bone at the extracellular matrix (ECM) level and to quantify the influence of the degree of mineralization. Degree of mineralization and mechanical properties were analyzed under dry conditions in 12 fixed and embedded transiliac crest biopsies (control n = 6, OI type I n = 3, OI type IV n = 2, and OI type III n = 1). Mean degree of mineralization was measured by microcomputed tomography at the biopsy level and the mineral-to-matrix ratio was assessed by Raman spectroscopy at the ECM level. Both methods revealed that the degree of mineralization is higher for OI bone compared with healthy control. Micropillar compression is a novel technique for quantifying post-yield properties of bone at the ECM level. Micropillars (d = 5 mu m, h = 10 mu m) were fabricated using focused ion beam milling and quasi-statically compressed to capture key post-yield properties such as ultimate strength. The qualitative inspection of the stress-strain curves showed that both OI and healthy control bone have a ductile response at the ECM level. The quantitative results showed that compressive strength is not reduced in OI bone and is increasing with OI severity. Nanoindentation measurements revealed that OI bone tends to have a higher Young's modulus, hardness, and dissipated energy compared with healthy bone. Micropillar strength and indentation modulus increased linearly and significantly (p < .0001) with mineral-to-matrix ratio. In conclusion, this study indicates that compressive mechanical properties of dry OI bone at the iliac crest are not inferior to healthy control at the ECM level and increase with mineralization. (c) 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available